FINAL EVALUATION REPORT
Wang Federal Incorporated

XTS-300

NATIONAL
COMPUTER SECURITY CENTER
9800 Savage Road

Fort George G. Meade
Maryland 20755-6000

July 11, 1995

Report No. CSC-EPL-92/003.B

Final Evaluation Report Wang XTS-300

This page intentionally left blank

il
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
FOREWORD

FOREWORD

This publication, the Final Evaluation Report Wang XTS-300 is being issued by the National Computer
Security Center under the authority of and in accordance with DoD Directive 5215.1, “Computer Security
Evaluation Center.” The purpose of this report is to document the results of the formal evaluation of Wang
XTS-300 operating system. The requirements stated in this report are taken from Department of Defense
Trusted Computer System Evaluation Criteria , dated December 1985.

Approved:

John C. Davis July 11, 1995
Director,
National Computer Security Center

i
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
ACKNOWLEDGMENTS

ACKNOWLEDGMENTS

Team members included the following individuals, who were provided by the indicated organizations:

Daniel P. Faigin
Chao-Hsing Pian
The Aerospace Corporation
Los Angeles, California

John G. Ata
James E. Knoke
Wang Federal Incorporated
McLean, Virginia

Brett C. Borgeson
Shaan Razvi
The MITRE Corporation
Bedford, Massachusetts

Technical support during Penetration Testing was provided by:
Frank Belvin
The MITRE Corporation
Bedford, Massachusetts

Technical support for the Covert Channel Analysis was provided by:
Dr. Jonathan K. Millen
The MITRE Corporation
Bedford, Massachusetts

The evaluation team acknowledges the great deal of effort put forth by previous evaluation team members,
including the production of much of of this report:

Frank Belvin
Harold J. Wolfe
The MITRE Corporation
Bedford, Massachusetts
Dr. Santosh Chokhani
Barbara A. Maguschak
The MITRE Corporation
McLean, Virginia
Heidi K. Henson
John A. Lawrence
National Security Agency
Fort Meade, Maryland

v
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
TABLE OF CONTENTS

TABLE OF CONTENTS

Chapter FOREWORD 1l
EXECUTIVE SUMMARY xi
Chapter 1 Introduction 1
1.1 Evaluation Process Overview e 1
1.2 Document Organization e 2
Chapter 2 System Overview 5
2.1 XTS-300 Background and History 5
Chapter 3 Hardware Overview 7
3.1 Introduction e 7
3.2 Central Processing Unit L 9
3.3 Memory on the Intel 486 12
3.4 Process Management 19
3.5 Input/Output 23
3.6 Peripherals 24
Chapter 4 Software Overview 31
4.1 Introduction 31
4.2 Software Components L 31
4.3 Process Environmento 36
4.3.1 Untrusted Process Environment L. 36

4.3.2 Trusted Process Environment L Lo 37

4.3.3 TCB Interface e 37

4.4 Security Kernel 38
4.4.1 Security Kernel Architectureo 38

4.4.2 Kernel Entry and Returno 40

4.4.3 Segment Management e 41

4.4.4 Process Management Lo 47

4.4.5 Device Management e 51

4.46 Memory Management Lo 55

4.47 Scheduling 56

4.4.8 Support Modules L 57

4.5 System Initialization oL 60
4.6 TCB System Services (TSS) 60
4.6.1 Process Management Lo 62

4.6.2 File System 63

4.6.3 File System Structure 63

4.6.4 File System Layers 65

4.6.5 Segment Manager e 66

4.6.6 Input/Output 66

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
TABLE OF CONTENTS

4.7 Trusted Software L 67
4.7.1 Trusted Processes 67
4.7.2 'Trusted Databases 71
4.7.3 Trusted Commands 76

4.8 Commodity Application System Services (CASS), 93
4.8.1 Invoking CASS 93
4.8.2 CASS Environment Components 94
4.8.3 Interface Requirements L 95

Chapter 5 TCB Protected Resources 97
5.1 Subjects 97
5.2 Objects e 98

Chapter 6 TCB Protection Mechanisms 103

6.1 Introduction 103

6.2 Policy Enforcement Mechanisms 103

6.3 Additional Supporting Protection Mechanisms 113

6.4 Identification and Authentication o0 117

6.5 Set User ID Protection 120

6.6 Audit 120

6.7 Object Reuse 124

Chapter 7 Assurances 129

7.1 TCB Layering e 129

7.2 Covert Channel Analysis 129

7.3 Design Specification and Verification o0 oL oL 131

7.4 TCB Recovery e 132

7.5 Configuration Management L L L 133

7.6 System Integrity L 133

T.7 Testing L 134

7.8 Architecture Study 135

Chapter 8 Evaluation as a B3 System 137

8.1 Discretionary Access Control 137

8.2 Object Reuse 138

8.3 Labels L 138

8.4 Label Integrity L L 139

8.5 Exportation of Labeled Information L. 140

8.6 Exportation to Multilevel Devices 140

8.7 Exportation to Single-Level Devices L 141

8.8 Labeling Human-Readable Qutput 0oL 142

8.9 Subject Sensitivity Levels o 143

8.10 Device Labels 143

8.11 Mandatory Access Control 144

8.12 Identification and Authenticationo oL 145

8.13 Trusted Path 146

8.14 Audit L 146

8.15 System Architecture 148

vi

FINAL: July 11, 1995

8.16 System Integrity
8.17 Covert Channel Analysis
8.18 Trusted Facility Management
8.19 Trusted Recovery
8.20 Security Testing

8.21 Design Specification and Verification
8.22 Configuration Management
8.23 Security Features User’s Guide
8.24 Trusted Facility Manual
8.25 Test Documentation

8.26 Design Documentation

Chapter 9 Evaluator Comments

Appendix A
Appendix B
Appendix C

Appendix D

Evaluated Hardware Components
Evaluated Software Components
Acronyms

Bibliography and References

vil

Final Evaluation Report Wang XTS-300
TABLE OF CONTENTS

161
165
167

171

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
TABLE OF CONTENTS

This page intentionally left blank

viil

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300

FIGURES
FIGURES
3.1 XTS-300 Hardware Layout e 8
3.2 XTS-300 Use of Physical Address Space 13
3.3 Selector-to-segment translationo L 15
3.4 Logical-to-physical (or page) translation oo 17
3.5 Privilege Level 21
4.1 XTS-300 System Diagram — TCB Process 32
4.2 XTS-300 System Diagram — Untrusted Process 33
4.3 Process Virtual Memory Address Space L 34
4.4 Process Linear Memory Address Space L 35
4.5 Kernel Hierarchy Diagram 39
4.6 Segment Branch Table Entry (SBTE) 42
4.7 Segment Management Data Structures Lo o oL o 44
4.8 Process Management Data: PDS and PLDS oL 48
4.9 Active Process Table Entry (APTE) 49
4.10 Disk and File System Structures 53
4.11 TCB System Services Layering Diagram 61
4.12 Overview of the STOP File System 64
6.1 Hardware and Kernel Access Checks o 104
6.2 TCB System Services (TSS) Access Checks 105
X

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
FIGURES

This page intentionally left blank

FINAL: July 11, 1995

4.1
4.2
4.3
4.4
4.5
4.6

Final Evaluation Report Wang XTS-300

TABLES
TABLES

Trusted Processes e e e 68
Trusted Databases e e 72
User Trusted Commands e 77
Operator Trusted Commands 82
Operator Trusted Commands 83
Administrator Trusted Commands 89

xi
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
TABLES

This page intentionally left blank

xii
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

The security protection provided by the Wang Federal Incorporated X7T'S-300 system, when configured in a
secure manner as described in the XTS-300 Trusted Facility Manual [34], was evaluated by the National
Security Agency (NSA). The security features of XTS-300 were examined against the requirements specified
by the Department of Defense Trusted Computer System Evaluation Criteria [12] dated December
1985 (TCSEC) to establish a candidate rating. The NSA evaluation team determined that the highest class
at which XTS-300 satisfies all the specified requirements of the TCSEC is B3. Therefore, XTS-300, when
configured as described in the Trusted Facility Manual, was assigned a Class B3 rating.

A system that is rated as a B3 class system provides a Trusted Computing Base (TCB) that enforces a
mandatory and discretionary access control policy. In addition, the TCB provides a trusted path to ensure
a reliable TCB-to-user communication connection, and an alarm mechanism to detect the accumulation of
events that indicate an imminent violation of the security policy. Separate administrator and operator roles
are defined. The least privilege principle was applied in the design of the TCB such that only those functions
requiring privileges have them. The TCB was analyzed and found to meet the minimization requirement
which reduces complexity, and to meet the layering, abstraction, and data-hiding requirement. The TCB
has been tested thoroughly and found to be resistant to penetration. The system developer also provided a
model and a descriptive top-level specification on which the design of the TCB is based.

XTS-300 is hosted on an Intel 486-based microcomputer processor using a standard EISA bus architecture.
Wang has developed STOP 4.1, which is a multilevel secure operating system that runs on the XTS-300
hardware. The X'T'S-300 provides a process virtual memory of up to four gigabytes, and uses the hardware
protection level (ring) mechanism in conjunction with software mechanisms for protection.

STOP 4.1 is a multiprogramming system that can support up to 256 users. STOP 4.1 consists of four
components: the Security Kernel, which operates in the most privileged ring and provides all mandatory
and a portion of the discretionary access control; the TCB System Services (TSS), which operates in the
next-most-privileged ring, and implements a hierarchical file system, supports user 1/O, and implements
the remaining discretionary access control; Trusted Software, which provide the remaining security services
and user commands; and the Commodity Application System Services (CASS), which operates in a less
privileged ring and provides the UNIX-like interface. CASS is not in the TCB and hence was not thoroughly
examined by the evaluation team.

XTS-300 is designed to provide a high level of security for many kinds of environments, including special-
ized applications such as network guards or filters in the handling of automatic or manual downgrading of
information operations. The system provides mandatory and discretionary access control which allows for
both a secrecy and integrity policy. The system provides for user identification and authentication used for
policy enforcement through user identifiers and passwords, and individual accountability through its auditing
capability. Data scavenging is prevented through the control of object reuse. The trusted path mechanism
is provided by the implementation of a Secure Attention Key (SAK). The separation of administrator and
operator roles is enforced through integrity protected operations.

XTS-300 is marketed and supported by Wang. The evaluated version of the operating system is STOP 4.1,
which was released in July 1995.

xiil

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
EXECUTIVE SUMMARY

This page intentionally left blank

X1V
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300

Chapter 1

Introduction

In July 1987, the National Security Agency (NSA) began a product evaluation of XTS-200, a product of
HFS Incorporated, now Wang Federal Incorporated. The XTS-200, including STOP 3.1.E, was formally
evaluated and placed in the Evaluated Products List (EPL) in May of 1992.

In May 1993, a Future Change Review Board (FCRB) meeting was held to discuss the changes planned to
the X'T'S-200 and those planned for XTS-300. A security analysis team was then assigned to evaluate the
updated system (XTS-200). The XTS-200, including STOP 3.2.E, was formally evaluated and placed on the
EPL in January of 1994.

In September 1994, a security analysis team was assigned to evaluate the changes made for XTS-300. The
objective of the evaluation was to rate the XTS-300, including STOP 4.1, against the Department of
Defense Trusted Computer System Evaluation Criteria [12] (TCSEC), and to place it on the EPL
with a final rating.

This report documents the results of the evaluation, which applies to the system as available from Wang in

July 1995.

Material for this report was gathered by the NSA evaluation team from evaluation evidence for the XTS-
300, including STOP 4.1, and through documentation, interaction with system developers, and by extensive
testing of the system.

1.1 Evaluation Process Overview

The Department of Defense Computer Security Center was established in January 1981 to encourage the
widespread availability of trusted computer systems for use by facilities processing classified or other sensitive
information. In August 1985 the name of the organization was changed to the National Computer Security
Center. In order to assist in assessing the degree of trust one could place in a given computer system, the
DoD Trusted Computer System Evaluation Criteria (TCSEC) was written. The TCSEC establishes specific
requirements that a computer system must meet in order to achieve a predefined level of trustworthiness. The
TCSEC levels are arranged hierarchically into four major divisions of protection, each with certain security-
relevant characteristics. These divisions are in turn subdivided into classes. To determine the division and
class at which all requirements are met by a system, the system must be evaluated against the TCSEC by
an NSA, Trusted Product and Network Security evaluation team.

The NSA supports the creation of secure computer products in varying stages of development from initial
design to those that are commercially available. Preliminary to an evaluation, products must go through
the Proposal Review Phase. This phase includes an assessment of the vendor’s capability to create a secure
system and complete the evaluation process. To support this assessment, a Preliminary Technical Review
(PTR) of the system is done by the NSA. This consists of a quick review of the current state of the system

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 1. INTRODUCTION

by a small, but expert, team and the creation of a short report on the state of the system. If a vendor passes
the Proposal Review Phase they will enter a support phase preliminary to evaluation. This support phase
has two steps, the Vendor Assistance Phase (VAP) and the Design Analysis Phase (DAP). During VAP, the
newly assigned team reviews design specifications and answers technical questions that the vendor may have
about the ability of the design to meet the requirements. A product will stay in VAP until the vendor’s
design, design documentation, and other required evidence for the target TCSEC class are complete and the
vendor is well into implementation. At that time, the support moves into DAP.

The primary thrust of DAP is an in-depth examination of a manufacturer’s design for either a new trusted
product or for security enhancements to an existing product. DAP is based on design documentation and
information supplied by the industry source, it involves little “hands on” use of the system, but during this
phase the vendor should virtually complete implementation of the product. DAP results in the production
of an Initial Product Assessment Report (IPAR) by the NSA assessment team. The IPAR documents the
team’s understanding of the system based on the information presented by the vendor. Because the IPAR
contains proprietary information and represents only a preliminary analysis by the NSA, distribution is
restricted to the vendor and the NSA.

Products that have completed the support phase with the successful creation of the IPAR, enter formal
evaluation. Products entering formal evaluation must be complete security systems. In addition, the release
being evaluated must not undergo any additional development. The formal evaluation is an analysis of the
hardware and software components of a system, all system documentation, and a mapping of the security
features and assurances to the TCSEC. The analysis performed during the formal evaluation requires “hands
on” testing (i.e., functional testing and, if applicable, penetration testing). The formal evaluation results in
the production of a final report and an Evaluated Products List entry. The final report is a summary of
the evaluation and includes the EPL rating which indicates the final class at which the product satisfies all
TCSEC requirements in terms of both features and assurances. The final report and EPL entry are made
public.

After completion of the Formal evaluation phase, products rated at Bl and below enter the rating mainte-
nance phase (RAMP). The rating maintenance phase provides a mechanism to entend the previous rating
to a new version of an evaluated computer system product. As enhancements are made to the computer
product the ratings maintenance phase ensures that the level of trust is not degraded.

Rating Maintenance is accomplished by using qualified vendor personnel to manage the change process of the
rated product during the maintenance cycle. These qualified vendor personnel must have strong technical
knowledge of computer security and of their computer product. These trained personnel will oversee the
vendor’s computer product modification process. They will demonstrate to the Trusted Product and Network
Security Evaluation Division that any modification or enhancements applied to the product preserve the
security mechanisms and maintain the assurances required by the TCSEC for the rating previously awarded
to the evaluated product.

1.2 Document Organization

This report consists of nine major sections and four appendices. Section 1 is the introduction. Sections 2
through 7 provide an overview of the system, its hardware and software architecture, and a description of
the security support (Trusted Computing Base (TCB) protection mechanisms and assurances). Section 8
provides a mapping between the requirements specified in the TCSEC and the system features that fulfill

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
1.2. DOCUMENT ORGANIZATION

those requirements. The last section of the main body of the report contains additional comments from the
evaluation team about the system. The appendices identify specific hardware and software components to
which the evaluation applies, and provide reference information.

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 1. INTRODUCTION

This page intentionally left blank

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300

Chapter 2

System Overview

The system described in this report is XTS-300 which includes the STOP 4.1 operating system and com-
mercially available hardware products. STOP 4.1 is a product of Wang Federal Incorporated. The hardware
consists of components manufactured by third-party vendors. The hardware includes the Intel 486 processor
and associated peripherals, including a hard disk, floppy disk, SCSI adapter, Ethernet card, streamer tape
drive, and keyboard. The X'TS-300 is assembled, tested, and distributed by Wang.

The system supports both a mandatory sensitivity policy and a mandatory integrity policy. It provides 16
hierarchical sensitivity levels, 64 non-hierarchical sensitivity categories, 8 hierarchical integrity levels, and
16 non-hierarchical integrity categories. Some of the hierarchical integrity levels are used by the system to
provide role separation, and the others are available to users. The combination of mandatory sensitivity
and integrity hierarchical and non-hierarchical levels is called the Mandatory Access Control (MAC) label.
(In this report, the term mazimum MAC label denotes a label with the maximum sensitivity and maximum
integrity levels, and with all possible non-hierarchical categories.) The system also supports a discretionary
access control policy.

XTS-300 consists of two major components: the Trusted Computing Base (TCB), and Commodity Ap-
plication System Services (CASS). The TCB contains the XTS-300 hardware, with the exception of that
connected to the Elite 16 LAN adapter for purposes of network connections, and the software portion of
STOP 4.1 that is trusted. STOP 4.1 consists of four components, three of which are in the TCB, the fourth
of which is CASS. The TCB provides all basic operating system services and enforces the system security
policy, while CASS provides the user with an application programming environment. Although CASS is not
part of the TCB, it is discussed in this report because it, or a site-provided alternative, is necessary for the
system to support users. The software portion of the TCB consists of a Security Kernel that provides basic
operating system, I/O functions, and security services, a higher layer called TCB System Services (TSS) that
provides a file system and other services, and Trusted Software that provides functions available to the user,
system operator, and system administrator. Wang has chosen to make the user interface of CASS similar to
that provided by UNIX, so that it will support applications developed to operate under UNIX.

Although the evaluated version of the system configuration does not include network attachment, Wang has
developed the Secure Communications Subsystem (SCS) that includes commercial hardware and TCB func-
tions to support network attachment. A portion of this hardware is included in the evaluated configuration.
Any use of the remaining SCS hardware components, or any use of the system with network attachment,
however, is beyond the scope of the present evaluation.

2.1 XTS-300 Background and History

XTS-200, XTS-300, STOP 3.1.E, STOP 3.2.E, and STOP 4.1 are descendants of the Secure Communications
Processor (SCOMP) [14] a system also developed by Wang, which was evaluated by the National Computer
Security Center (NCSC) in 1984 and received an Al rating. The hardware base is fundamentally different

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 2. SYSTEM OVERVIEW

than the SCOMP’s, and the software has also undergone significant further development. Development of
STOP 3.1 on the DPS6 PLUS began in 1987 and continued through 1989. During that time, the combination
of the software and hardware became known as X'T'S-300.

In contrast to the hardware on which the SCOMP was based (the DPS6), the DPS6 PLUS and DPS 6000
incorporate virtual memory and ring-protection techniques from the Multics [13] system, so no additional
hardware modification is required. The salient differences between the operating system employed by SCOMP
and XTS-200 are that STOP 3.1 incorporates complete file system support within the TCB, and that it has
been considerably restructured to improve its use of layering and other software engineering principles. In
addition, X'T'S-200 supports multiprocessor configurations. Development on STOP 3.2.E began in June 1992
and was completed in June 1993.

The essential differences between XTS-300 and XTS-200 result from the change in hardware base, primarily
to employ the functions provided by the Intel processor. Memory management, ring protection logic, and
process management have been updated in XTS-300. In addition, I/O functions have been moved from TSS
into the kernel. Further, the XTS-300 is a single-processor system. However, the user interface to X'T'S-300
has changed little from that of XTS-200. Development on STOP 4.1 began in November 1992 and was
completed in October 1994.

The overview begins with an examination of the hardware, followed by a description of the software.

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300

Chapter 3

Hardware Overview

3.1 Introduction

The XTS-300 is a 32-bit, demand-paging, time-sharing, single processor system. Separation of data is
accomplished by a combination of hardware and software. The Intel 486, upon which the XTS-300 is
based, incorporates its own ring protection mechanism supporting four rings, descriptor privilege levels, gate
descriptors, segment attributes (read, write, execute), and call/return instructions. The privilege level (PL)
protection mechanism ranges from PL0O (the most privileged) to PL3 (the least privileged). It supports
instructions to address bits, bytes, words, and double words (32-bits). It also supports up to 256 interrupt
vectors, although the XTS-300 does not use all of these. Instruction addressing modes include displacement,
base, base plus displacement, scaled index plus displacement, base plus index plus displacement, and base
plus scale index plus displacement. The XT'S-300 does not support loadable firmware.

Each XTS-300 system is built using the following Commercial Off-The-Shelf (COTS) products:

e Intel 486 CPU Board

e 4 GByte Memory

e SCSI Host Adapter

e Hard Disk

e 250 MByte Streamer Tape Unit

e 3.5” 1.44 MByte Floppy Disk (capable of reading standard density diskettes)
e I/O Controller (2 serial, 1 parallel)

e VGA Video Controller Card

e 14" Monochrome Monitor

e 101-key Keyboard

e 4-Port Interface Controller Card (optional)
e Ethernet Card (optional)

A more detailed list of the COTS products used can be found in Appendix A of this document. Figure 3.1
shows the hardware layout of the XTS-300. Each major component is discussed in this chapter.

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

SCs |

Zleuas
Tlenss

EISA Motherboard
I/OAT43 Ether-

Seriall net card

Serial2 m
X
I

Serial3 S104 3 -
g | Video Monitor

. S | Contr.

Serial4 »
o
73

FPU SCSI Host
CPU Adapter
Intel 486 Floppy KC Keyboard
Controller
Not part of

Floppy Tape Hard — T T = evaluated
Disk configuration

Figure 3.1. XTS-300 Hardware Layout

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
3.2. CENTRAL PROCESSING UNIT

3.2 Central Processing Unit

The XTS-300 utilizes an Intel 486 as its CPU. The Intel 486 supports 32-bit addressing. It incorporates the
following capabilities: cache, memory management, floating point coprocessing, and write buffers. The cache
is 8 Kbytes and is used to house both data and instructions. The Intel 486 uses a paging and segmentation
mechanism that can be independently enabled and disabled. It also provides a ring protection structure
(described in Section 3.4.3, page 20).

3.2.1 Registers

The Intel 486 includes the following sets of registers (quantity in parentheses):

e General (8)

e Control (4)

e Instruction Pointer (1)

o EFLAGS (1)

e Segment (6)

e Memory Management (4)

¢ Floating Point (8)

3.2.1.1 General Registers

These 32-bit, general registers hold the data necessary for logical and arithmetic operations, as well as for
address calculations. Each 32-bit register can be broken down into two 16-bit registers, where only the low
16 bits are used. Each 16-bit low register can be broken down even further into a high byte and a low byte.
General registers are accessible by applications.

3.2.1.2 Control Registers

There are four 32-bit Control Registers in the Intel 486: CRO - CR3. CRO contains system flags that control
the state of the entire system rather than to any individual task. CR1 is reserved. CR2 and CR3 are used
by the paging mechanism as follows: CR2 contains information to handle page faults, and CR3 contains the
base register of the Page Directory (PDIR). Control registers are not accessible outside of Privilege Level 0
(PLO0).

CRO contains system control flags that are general to the processor. The following flags are contained in

CRO:

Paging Bit (PG) Enables or disables paging mode.

FINAL: July 11, 1995

Final Evaluation Report Wang X'T'S-300

CHAPTER 3. HARDWARE OVERVIEW
Cache Disable (CD) Enables and disables internal caching.
Not Write-through (NW) Enables and disables cache write-throughs.
Alignment Mask (AM) Enables and disables alignment checking.
Write Protect (WP) Write-protects user-level pages against supervisor-level writes when set.
Numeric Error (NE) Enables and disables the mechanism for reporting floating point numeric errors.
Task Switched (TS) Set for every task switch. Used when interpreting floating-point arithmetic.
Emulation (EM) Enables and disables the math coprocessor.
Math Present (MP) Used to help synchronize processor with the coprocessor.

Protection Enable (PE) Enables and disables segment level protection.

The CR3 register contains two flags: Page-level Cache Disable (PCD) and Page-level Writes Transparent
(PWT). The PCD controls caching of the referenced page. This bit is set to disable by the kernel startup on
the XT'S-300. The PWT controls write-through on an external cache. This bit is set to disable write-through
on the XT'S-300 by the Bootstrap Loader as the XTS-300 does not utilize the external caching feature. The
CR3 register also contains the 20 most significant bits of the base address of the page directory (See Section
3.3.3.1, page 14 for a discussion of page directories).

3.2.1.3 Instruction Pointer Registers

The instruction pointer register (EIP) contains the 32-bit pointer to the offset of the address of the current
code segment for the next instruction to execute.

3.2.1.4 EFLAGS Register

The EFLAGS register handles mode selection (i.e. protected, virtual-8086, or real address), I/O privilege,
task switching status, debugging, and maskable interrupts. Only the security relevant bits, such as the /O
Privilege Level (IOPL) and the Interrupt-enable Flag (IF), are described in detail. The following is a list of
bits on the EFLAGS register:

Carry Flag (CF)

Parity Flag (PF)
Auxiliary Carry Flag (AF)
Zero Flag (ZF)

Sign Flag (SF)

Trap Flag (TF)

Interrupt Enable Flag (IF)

10
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
3.2. CENTRAL PROCESSING UNIT

Direction Flag (DF)

Overflow Flag (OF)

Input/Output Privilege Level (IOPL)
Nested Task (NT)

Resume Flag (RF)

Virtual 8086 Mode (VM)

Alignment Check (AC)

Bit 19-31 Reserved by Intel

The IOPL bits determine if a process has access to an I/O address space. If the IOPL is greater than the
current privilege level, access is granted. Otherwise, unless the Task State Segment (TSKSS!) bitmap allows
access, an exception is incurred.? In the XTS-300, the IOPL field is set to 0.

The IF bit, if set, will enable the processor to respond to maskable interrupts. Maskable interrupts are
interrupts in an executing program caused by such things as printing. A maskable interrupt, as opposed to
a non-maskable interrupt (NMT), will complete the current task before servicing the interrupt.

The IF, IOPL, RF, VM, and AC flags cannot be modified by processes running at a privilege level not equal
to 0. These flags are considered privileged on the Intel 486.

3.2.1.5 Segment Registers

A segment is an independent, protected address space. Each segment register is designated to store informa-
tion about a certain type of segment. The CS register, for example, refers to a code segment that contains
instructions. There are six 16-bit segment registers on the Intel 486; Code Segment (CS), Data Segment
(DS), Stack Segment (SS), Data Segment (ES), Data Segment (FS), and Data Segment (GS). When an
instruction is executed, it loads a pointer to a descriptor table into the segment register. This pointer is
called the segment selector. In addition to holding a pointer to a descriptor table, the selector also contains
information about the type of descriptor table being accessed and privileged information. The Intel 486
allows a task to have access to as many as six segments at one time. Section 3.3.3.1, page 14 describes
segments in greater detail.

The SS register refers to information regarding the current stack segment. The segment being pointed to by
the SS register must have a privilege level which is equal to or greater than that of the segment in order to
read or write. The SS register can be read and written by processes running at all privilege levels.

The DS, ES, FS, and GS registers refer to segments containing data. There are four data segments to improve
performance. The segment being accessed is always checked to ensure that the proper registers reference
the appropriate corresponding segment (i.e. data segments are only referenced by data segment registers
and code segments are referenced only by code segment registers). See Section 3.4.3.1, page 21 for more
discussion on how and when these checks are performed.

TIntel refers to this as the TSS; however, because TSS also represents the TCB System Services on the XTS-300, a different
acronym was needed.
2See Section 3.4.1, page 19 for a complete description of the TSKSS.

11
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

3.2.1.6 Memory Management Registers

The Intel 486 contains four memory management registers; the Global Descriptor Table Register (GDTR),
the Local Descriptor Table Register (LDTR), the Interrupt Descriptor Table Register (IDTR) and the Task
Register (TR). These registers are initially set by the System Loader and are modified only by ring 0
operations thereafter.

The GDTR contains the 32-bit base address and the 16-bit segment limit of the Global Descriptor Table
(GDT). The GDT contains a list of segment descriptors that are used globally. In other words, the GDT
contains information which must be accessible to the system at all times. The LDTR contains the 32-bit
base address and the 16-bit segment limit of the Local Descriptor Table (LDT). The LDT contains a list of
segment descriptors that are local to the current process. The IDTR contains the 32-bit base address and
16-bit segment limit of the Interrupt Descriptor Table (IDT). The IDT contains a list of gate descriptors
associated with the handling of interrupts. The TR register contains the segment selector for the current
task. This selector points to the TSKSS contained in the GDT for the current process.

3.2.1.7 Floating Point Registers

There are 8 80-bit floating point registers on the Intel 486. These registers handle the floating point calcu-
lations on the math co-processor. The values within these registers are explicitly saved and restored by the
operating system for each process. However, they are not saved when a task switch occurs.

To keep track of the general state of the Floating Point Unit (FPU), a 16-bit status word is used. This
FPU status word contains flags which can be passed back to the CPU through the AX register. This status
word includes a stack fault flag and six exception flags, including overflow and underflow flags. If a numeric
exception occurs, the FPU will either handle the exception internally (i.e. it will produce the most reasonable
result based on the information and allow the execution of the process to continue un-interrupted) or by
sending either an interrupt 16 (Floating Point Exception) or an external interrupt to invoke a software
exception handler. The XTS-300 is configured to handle these exceptions by setting the NE bit in the CRO
register.

3.3 Memory on the Intel 486

The Intel 486 supports several types of memory. The following types of memory are supported by the
XTS-300:

e Main Physical Memory (up to 4 Gigabytes)

e Cache Memory

3.3.1 Main Physical Memory

The main physical addressing range for the Intel 486 is 4 Gbytes. The XTS-300 uses only 16 MBytes of this
addressing range. Figure 3.2 shows the physical address space on the XTS-300.

12
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
3.3. MEMORY ON THE INTEL 486

Kernel Declared Data

Kernel Text Loaded by
System
Loader

TSS Text

CASS Text

Memory Map

Managed Memory
640k

Video Memory
Ethernet Memory
BIOS ROM's

BIOS RAM
1Mb

Managed Memory

16 Mb

Figure 3.2. XTS-300 Use of Physical Address Space

13
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

Once the bootstrap loader has been executed, physical memory locations are rarely referenced by software
using a physical address.? Instead, a virtual address is referenced. The virtual address is then mapped, via
a linear address, to the main physical address.

3.3.2 Cache Memory

The Intel 486 contains an 8 Kb write-through data and instruction cache that functions with physical
addresses only. The XTS-300 disables all external cache options. Caching, internal to the Intel 486, is used
on the XTS-300 to increase performance. The internal cache is not directly addressable by a process.

The XTS-300 disables the caching of PDIR entries because these entries are cached in the Translation
Lookaside Buffer (TLB). Caching never takes place at both the PDIR and Page Table levels. The CD and
NW bits in CRO are both set to zero, enabling data cache and cache write-throughs. Upon startup, the cache
is cleared. When a pagetable changes (due to segment growth), the cache will be flushed to be sure that
the new pagetable entries and PDIR entries come into effect. Flushing the paging cache consists of saving
and reloading the CR3 and PDIR registers. Segment-level cache is flushed by loading a NULL selector into
the volatile segment registers (see Section 3.3.3.1 and Section 3.3.3.2 for more information on segments and

pages).

3.3.3 Virtual Memory

The XTS-300 uses a virtual memory management scheme to address physical memory locations. The XTS-
300 processor’s virtual memory management scheme supports a 64 Terabyte non-process virtual memory
address range. Each process is allowed up to 4 GBytes of virtual memory space.

3.3.3.1 Segments

A segment is a unit of address space ranging from 4 KBytes up to 4 GBytes and is created by the operating
system. Segments are defined by a segment descriptor. The segment descriptor contains information about
the size, base address, and protection level of the segment (as seen in Figure 3.3).

The segment register holds two pieces of information: a selector that points to the offset within the descriptor
table where a particular segment descriptor resides and a base address pointer and the segment limit of the
linear address (see Figure 3.3). The purpose of the segment register is to provide the initial information
required to locate a page in memory; the logical address. The type of segment register that is loaded (e.g.,
code segment, data segment, or stack segment) is dependent on what type of segment is being accessed. For
example, if instructions are being accessed, the CS register will be loaded. The segment register consists
of two parts; a visible part (loaded using the MOV instruction) that contains a segment selector, and an
invisible part (loaded by the processor and invisible to even the kernel software) that contains information
about the limit, the base address, etc.

The segment selector contains an index to a specific segment descriptor in the descriptor table, a bit (TT)
to identify which descriptor table is being accessed (GDT or LDT), and a requester privilege level (RPL)
bit that identifies the privilege level of the procedure that created the selector. On the XTS-300, segment

3Kernel and global data segments assume that the linear address is the physical address.

14
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
3.3. MEMORY ON THE INTEL 486

15 031 0
Segment Base Address, Limit
Register Selector Ero)))

\\ \\
\ N\ AN
\ \
Segment
Selector \ INDEX Tl reL \
\
D
or
aDT,
LDT GDT

y

segment descriptor

3 222221 111111
1 4 321009 654 3 21 87 0
A D
Base G D|O \Y Limit P P |S Type Base
L L
Base Address Segment Limit

Figure 3.3. Selector-to-segment translation

15
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

descriptors are loaded into the GDT only during startup. The GDT is also loaded with pointers to the LDT
and gate descriptors. However, the majority of segments are process local and only use the LDT. Therefore,
the TI bit is usually set to indicate that the LDT is being used. Figure 3.3 displays a graphical representation
of the segment selector, the segment descriptor and the relationship between the two.

A segment descriptor provides information about the size (segment limit), base address, descriptor privilege
level (DPL), and other control and status information. There are two classifications of segment descriptors,
code/data descriptors and system descriptors. The classification of the descriptor is determined by the S
bit (bit 12) in the descriptor itself. The maximum size of a segment descriptor can vary from 1 MByte to
4 GBytes. The granularity bit (G) (bit 23) toggles the limit field of the descriptor to change the maximum
size of the segment. Segment descriptors are created by ring 0 software and cannot by modified directly by
an application. Conversely, segment registers can be modified by applications.

3.3.3.2 Pages

A page i1s a 4 KByte portion of memory. A major distinction between segments and pages is that pages
have a fixed maximum size while segment size can vary. Unlike segmentation, paging is transparent to
applications. On the XTS-300, segmentation and paging are combined such that segments are paged. A
segment is capable of being 1024 pages. By using paged segments, an application does not have to reside
entirely in main memory. Only the portion of the application which is actually being used (that is, the page
being used) needs to be present in physical memory.

Figure 3.4 shows how a logical address, or virtual address, is translated into a physical address. pagetables
are intermediaries between the linear address and the physical address. The linear address, obtained from
the segment, contains three pieces of information about a page; the PDIR entry location, the pagetable entry
location, and the location in the page frame.

The Page Directory (PDIR) is a table of pointers that point to specific pagetables associated with a particular
process. On the XTS-300, each process has its own PDIR. CR3 contains the information about which PDIR
should be accessed. The PDIR can contain up to 1024 pointer entries, each pointing to a particular pagetable
associated with a process. With the exception of Binary Compatibility Standard (BCS) (see Section 4.2, page
31) and kernel text and declared data segments, most segments use only one, unique PDIR entry number.
This number is the same as the segment number. Each location in a pagetable is a pagetable entry. The
pagetable entry is located by using the information in the linear address. The pagetable entry points to a
particular page frame. Information in the linear address specifies where in the page frame to look. The page
frame contains entries that point to the physical address.

3.3.3.3 Address Translation

Figure 3.4 depicts the sequence of events that occur during address translation. At a high level, the processor
begins with a virtual address. With that virtual address, a linear address is determined. The information
contained in the linear address, combined with the proper PDIR and pagetable entries, define where in a
page frame the pointer to the physical address is located.

The address translation begins with a segment register. The segment register contains a selector and the
base address and segment limit of the linear address. The segment selector points to the offset within one
of the three descriptor tables (GDT, LDT, or IDT) where the referenced descriptor is located. The base

16
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
3.3. MEMORY ON THE INTEL 486

15 031 0
Virtual Address Selector Offset
Descriptor
Table ¥
segment
> descriptor » (*)
31 DIRECTORY TABLE OFFSET 0
Linear Address Which PDIR Which Page Table Where in the
entry entry page Page
Frames
I 1
Page Physical Add
PDIR Table Plggeats —
which page

CR3

—— P table -

—1 which page

which
PDIR

Figure 3.4. Logical-to-physical (or page) translation

17

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

address field in the segment descriptor, along with the base address in the segment register, form the linear
address.

The linear address contains three pieces of information; the offset within the PDIR, the offset within the
pagetable, and the offset within the page frame. CR3 points to the specific PDIR associated with the segment
Once a PDIR entry has been located, its contents are used to determine the location of the pagetable entry.
The PDIR entry points to the specific pagetable. The pagetable entry points to a particular page frame.
This information, along with a pointer in the linear address, is used to determine where in the page frame the
information regarding the physical address is located. The page frame entry points to the physical address.
A description of how the ring protection mechanism is used during page translation is contained in Section

3.4.3.

3.3.3.4 Gates

In order to protect control transfers between code segments of different privilege levels, gate descriptors are
used. There are four types of gate descriptors; call gates, trap gates, interrupt gates and task gates.

Interrupt and trap gates are used to reference procedures and tasks. When an interrupt occurs, the IDTR
register is used to locate the interrupt or trap gate in the Interrupt Descriptor Table (IDT). This gate
contains a pointer to either the GDT or the LDT offset containing a segment descriptor. The segment
descriptor and the gate combined yield the interrupt procedure entry point. The gate descriptor contains
information about the location of the executable segment descriptor that the interrupt or trap is referencing.
Using this information, along with an offset value provided by the gate descriptor, an interrupt procedure
entry point can be determined.

A call gate handles the control transfer from one segment to another within the same task. This is done by
issuing either a JMP or a CALL instruction. Call gates may reside in either the GDT or the LDT, but never
in the IDT. Call gates contain the segment selector that points to a gate descriptor that, in turn, points to
an offset to the procedure entry point. Because the segment selector points to the gate descriptor in a call
gate, there is no use of the offset field in the segment selector. Instead, the offset of the gate descriptor is
used along with the base address field in the code segment descriptor to create a procedure entry point.

The task gate is utilized when a task switch is implemented. The task register (TR) contains the address
of the descriptor in either the LDT or the IDT. This descriptor points to a particular TSKSS in the GDT
which is explain in further detail in Section 3.4.1. A gate descriptor allows for a transfer of control from one
segment privilege level to another. Gate descriptors contain information about the destination segment. A
description of how protection is enforced during control transfers and task switching is discussed in Section

3.4.3.

3.3.3.5 Returning from Gates and Interrupts

Once a control transfer has been completed or an interrupt has been serviced, a transfer back to the original
process is required. This is performed using the IRET and RET instructions.

The RET instruction is used to return from a CALL instruction. When used, a check is made of the
descriptor addressed by the return. The code segment to return to must be of equal or lesser privilege than
the current code segment. A return is granted if the RPL of the code segment is numerically greater than
the CPL of the segment being returned from and if the DPL of the code descriptor is greater than the CPL.

18
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
3.4. PROCESS MANAGEMENT

If the CPL is less than the return code segment DPL, the segment registers are loaded with a NULL selector
(see Section 3.4.3 for a complete definition of RPL, CPL, and DPL).

The IRET instruction is used to return from an interrupt. The privilege checks made on an IRET instruction
are dependent on the value of the NT flag in the EFLAGS register. If NT is equal to 0, the IRET instruction
returns from the interrupt without performing a task switch. A check is performed to ensure that the code
returned to is equally or less privileged than the interrupt routine. If the NT flag is equal to 1, the IRET
instruction will reverse the operations previously performed by the CALL/INT instruction.

3.4 Process Management

A task is a program which is currently being executed. The Intel 486 uses privilege level checking to
distinguish between the different privilege levels of each process and ensures that no access is given to
a process at a higher numbered privilege level. The following three sections describe in greater detail:
processes, interrupts and traps, and hardware protection devices.

3.4.1 Processes

A process is instantiated through either an interrupt, an exception, a JMP, or a CALL. A context switch is
the act of one process being saved in order for another process to execute. Context switching occurs in any
of the following four cases:

e The current task executes a JMP or CALL to a TSS descriptor
e The current task executes a JMP or CALL to a task gate
e An interrupt or exception indexes to a task gate in the IDT

e The current task executes an IRET when the NT flag is set

When a process is saved in memory, it is saved to a TSKSS. The TSKSS contains information about the
general registers, the segment registers, the EFLAGS register, the instruction pointer, the selector for the
TSKSS of the previous task, the selector for the LDT, and the base address of the I/O bit map.* A descriptor
for the TSKSS is stored in the GDT.

The current task is identified by the TR. The TR points to the TSKSS of the current task. When a
task is switched, the old TR is stored and the new TSKSS is loaded. If that task is later suspended, the
instruction pointer for that task is saved so that the task can later be resumed at the same point at which
it was suspended. When a task is switched, the TS bit in the CRO register is also set. This bit provides
coordination between different tasks and the Floating Point Unit (FPU). The TS bit signifies that, depending
on whether it is set or not, the context of the FPU may not be that of the current task. The TS bit is always
set to 1 by the Intel 486 when a context switch occurs. It is only reset to 0 by software if an FPU instruction
is executed by the currently executing process. This bit is readable by an untrusted process.

*The I/O bit map is not used on the XTS-300. To accomplish this, the pointer to the I/O bit map in the TSKSS is set to
point to the top of the TSKSS (i.e., the TSKSS limit).

19
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

3.4.2 Interrupts and Traps

The Intel 486 supports both interrupts and exceptions. Interrupts occur when there is a forced program
control transfer due to hardware. An exception is caused when either an instruction cannot be performed
or when the INT instruction is executed. There are three types of exceptions: faults, traps and aborts.
In the case of a fault, the saved contents of the CS and EIP registers point to the instruction after the
instruction that generated the fault. In the case of a trap, however, the exception is generated after the
faulting instruction is performed. Aborts are used for major errors such as hardware errors or inconsistent
values in system tables. The Intel 486 handles all software level INT calls as exceptions.

The Intel 486 contains 256 interrupt address spaces. The first 32 locations are reserved for exceptions and
NMIs. The XTS-300 uses 16 additional interrupt locations for its own interrupts. Each interrupt code
has an associated gate with a corresponding gate descriptor. These gate descriptors are stored in the IDT.
Interrupts on the XTS-300, excluding NMIs, are controlled by the programmable interrupt controller (PIC)
(described in Section 3.6.1, page 24). All interrupts, excluding NMIs, have the same priority level on the
XTS-300.

If a less privileged process produces an interrupt with a higher numbered privilege, a check is made on
the CPL associated with the process and the DPL of the interrupt code segment. If the CPL is less than
the DPL (i.e., the process has a lesser privilege than that of the interrupt routine), a stack switch occurs.
Because servicing the interrupt requires a change in privilege levels, a separate stack is created. The reason
for this is to prevent less privileged programs from manipulating more privileged programs. The contents
of the registers are saved in the new stack and the registers are loaded with the new, more privileged, stack
information. When the interrupt has been serviced, the original contents of the registers are restored and
the process continues. This prevents a lesser privileged process from writing to a more privileged process.

The XTS-300 is configured such that the cartridge tape and SCSI disk drives use the same interrupt request
lines (IRQ’s). Each ethernet line has its own IRQ. Each communications port (i.e., COM1 and COM2) has
its own IRQ and all SIO4 ports (see Section 3.6.8, page 27) have the same IRQ.

3.4.3 Protection

The Intel 486 has the ability to operate at three different levels; protected mode, real-address mode, and
Virtual 8086 mode. The XTS-300 runs in real-address mode at start-up and then switches to protected
mode. Virtual 8086 mode is not utilized by the XTS-300.

Protected mode utilizes all instructions and architectural features of the Intel 486. It uses the 32-bit instruc-
tion set. Real-address mode simulates an enhanced 8086 processor.

A ring architecture, provided by the Intel 486, is used at all levels except for pages. The Intel 486 ring
architecture consists of 4 levels (PLO-PL3), with PLO being the most privileged level. As seen in Figure 3.5,
a non-TCB process utilizes a different ring architecture than a TCB process. Both, however, share the same
ring 0 and ring 1 assignments. These 4 ring levels are used at several different levels of address translation.
Bits are used to supply privilege information about the selector (RPL or CPL), descriptor (DPL), and page
levels (DPL).

20
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
3.4. PROCESS MANAGEMENT

Untrusted Process Trusted Process

Untrusted ‘ A
Applications "‘ "

Trusted
System/Application
CASS Software
TCB S_ystem TCB System
Services Services
Kernel Kernel

Figure 3.5. Privilege Level

The Intel 486 provides five ways by which it checks for protection violations contained in memory refer-
ences; type check, limit check, restriction of addressable domain, restriction of procedure entry points, and
restriction of instruction sets. If one of these checks does not pass, an exception is generated.

3.4.3.1 Type Checking

Type checking is a test of the Type field in the segment descriptor to ensure that code segments are treated
as code segments and data segments are treated as data segments. Type checking is performed on segments.
Because segments can contain either application code and data segments or system segments and gates,
protection is necessary at the segment level to ensure that all segments are properly defined and that no
segment is accessed by a less privileged process. There are two cases when the Intel 486 will perform a type
check on a segment. The first check is made when a descriptor selector is loaded into a segment register. This
is to ensure that the CS register, for example, contains only code segment selectors. The second case is when
a segment is used by an instruction. This is because of three architectural rules that state the following;:

e executable segments cannot be written to by an instruction
e a data segment must have its writable bit set in order for an instruction to be able to write to it

e an executable segment must have its read bit set for an instruction to read it

3.4.3.2 Limit Checking

Limit checking ensures that programs do not try to access addresses that are located outside of the targeted
segment. Limit checking also occurs at the segment level. The limit field in the segment descriptor defines

21
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

its size. The limit field is dependent on the G bit that is also in the segment descriptor. The granularity
bit toggles the maximum limit between 1 Mbytes and 4 Gbytes. The limit field is also dependent on the
expand-down bit; however, this is not utilized on the XTS-300. A general protection exception is generated
if access to a memory byte, word, or doubleword at an address greater than the limit is attempted.

3.4.3.3 Restriction of Addressable Domain

Restriction of addressable domain refers to protection checking at the paging level. When a reference is made
to a page in memory, the processor checks the CPL against the User/Supervisor (U/S) bit of the pagetable
entry. If the U/S bit is set to 0, then that page is set to supervisor level. If the U/S bit is set to 1, then
the page is set to user level. If the CPL is 0,1, or 2, then the processor will be running at the supervisor
level and all pages will be accessible. If the CPL is 3, the processor will be running at the user level and
only the pages marked U/S bit = 1 will be accessible. The XTS-300 sets the U/S bit to 1 which means that
all pages are readable and writable by any level. In addition to the U/S bit, there is a Read/Write access
(R/W) bit at the page level. If the processor is running at U/S = 0, with the Write Protect (WP) bit in the
CRO register set to 0, then all pages are both readable and writable. However, if the processor is running at
U/S = 1, then only the pages with R/W = 1 will be readable and writable. Emphasis is, in turn, placed on
protection at the segment level.

3.4.3.4 Restriction of Procedure Entry Points

Restriction of procedure entry points relies on the call gate mechanism. When a CALL or JMP instruction
is executed, a call gate is employed to handle the transfer from one code segment to another. The call gate
specifies where in the procedure to enter (i.e., what segment) and what privilege levels are allowed access to
that segment. When a control transfer is made using a call gate, four different privilege levels are checked
against each other; the DPL of the call gate, the DPL of the code segment descriptor, the CPL of the current
code segment selector, and the RPL of the call gate selector.

The following describes the sequence of events for privilege level checking when a call gate is executed:

The CPL, located in the code segment register, is compared with the RPL of the gate selector (located in
the gate descriptor). The maximum numerical value of the two is taken to be the active privilege level. This
calculated privilege level is then compared to the DPL of the gate descriptor. The maximum of the RPL and
CPL must be numerically less than or equal to the DPL in order to continue; otherwise, a general protection
trap is produced. If this check passes, a comparison is made of the DPL of the destination code segment and
the CPL. If they are not equal, a general protection trap occurs and the call will not be allowed to proceed.

If a gate is not used, the sequence of events differs in one area. The last check between the CPL and the
DPL of the destination code segment requires that the DPL be numerically less than or equal to the CPL.

3.4.3.5 Privilege Level Checking

The Intel 486 uses the three privilege indices, mentioned at the beginning of this section, to make decisions
on the accessibility of data and code. The CPL, RPL, and DPL provide a mechanism for isolating privilege
levels and preventing any mixing of levels. A privilege level check is made at various points during address

22
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
3.5. INPUT/OUTPUT

translation to ensure that no mixture of privileged data takes place. This section covers privilege level checks
made when address translation is made for data access only.

The first check to be made during address translation is when the selector is loaded into the segment register.
The selector contains the RPL of the process. The descriptor that the selector points has a DPL associated
with it. The RPL and the DPL are compared to ensure that the RPL is numerically greater than or equal
to that of the DPL. If this is not true, a general protection exception will be issued. The Intel 486 is capable
of making a second level check at the page level; however, the XTS-300 does not feature page level privilege
checking. All privilege checks are made at the segment level.

3.4.3.6 Ring 0 Privileged Instructions

The following instructions are privileged and can only be executed at PLO:

o CLTS -Clear Task-Switched Flag

e HLT -Halt Processor

e INVLPG -Invalidate TLB Entry

e LGDT -Load GDT Register

e LIDT -Load IDT Register

e LLDT -Load LDT Register

e LMSW -Load Machine Status Word (modifies the lower 16 bits of CRO)
o TR -Load Task Register

e MOV to/from CR0O -Move to Control Register 0, 2, or 3

e MOV to/from DRn -Move to Debug Register n

e MOV to/from TRn -Move to Test Register n

3.5 Input/Output

Input and output (I/O) on the XTS-300 is accomplished through I/O ports that are actually registers
connected to peripheral devices. The I/O ports are separate from both the Basic Input/Output System
(BIOS), which acts as a liaison between the system software and the hardware during system bootstrap,
and the main physical memory. The Intel 486 provides a separate protection mechanism for I/O called the
IOPL. The IOPL, located in the EFLAGS register, determines the lowest privilege level at which access to
the I/O ports is possible. Due to the fact that each process has its own copy of the EFLAGS register, there
can exist a different IOPL for every process . The XTS-300 sets the IOPL field to be zero, leaving only
PLO access. A process can change the IOPL using the POPF instruction; however, this change can only
be made while in ring 0. Untrusted software can access I/O ports only through TCB gates (at the software
level). This provides protection against access to the I/O ports by software. The TSKSS also provides an

23
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

I/O permission Bit Map that contains information about I/O addresses to which a particular process has
access to. However, this use of the bit map is disabled by the TCB in the XTS-300.

The following instructions are “sensitive instructions” (they are will only execute if the IOPL field is set to
0) and can only be used when operating at ring 0:

IN -Input

INS -Input String

e OUT -Output

OUTS -Output String

CLI -Clear Interrupt-Enable Flag

STI -Set Interrupt-Enable Flag

3.6 Peripherals

In addition to the Intel 486, the XTS-300 contains an Integrated System Peripheral (ISP) to handle all
interrupts generated by the system and a Data Bus Controller (DBC), to direct the keyboard controller,
control the real-time clock and configure the EISA Bus Controller. An EISA Bus Controller (EBC) is
included to direct the steering logic of the DBC and the ISP along with a Memory/Cache Controller (MCC)
that controls access to the CPU, the DMA devices and the EISA Masters. The XTS-300 also contains
controllers for the peripheral storage and input devices.

3.6.1 Integrated System Peripheral (ISP)

The ISP handles interrupts, DMA functions to and from peripheral devices, and access arbitration to the
Extended Industry Standard Architecture (EISA)/Industry Architecture (ISA) bus. The ISP operates in
3 modes: standard mode, tri-state test mode, and a reserved mode that is not used by the XTS-300. In
order to change modes, the user must have physical access to the XTS-300 to change the privilege level of
two hardware pin signals that serve as inputs to the ISP. These two pins determine what mode the ISP is
operating in.

The ISP consists of the following subcomponents:

e Two Programmable Interval Timers

EISA NMI/Time-out Logic

Two Modified Programmable Interrupt Controllers

EISA DMA /Refresh Controller

EISA System Arbiter

24
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
3.6. PERIPHERALS

The two Programmable Interval Timers (PIT) collectively contain 6 timers; System Interrupt Timer, Memory
Refresh Timer, Speaker Output Timer, Fail-Safe Timer, and two extra timers. However, the system software
on the XTS-300 uses only the System Interrupt Timer. The PIT can only be programmed by software
through specified 1/O ports whose addresses are inaccessible from outside PLO and are protected by the
IOPL field.

The ISP produces the NMI for the XTS-300. The NMI/Time-out Logic Chip consists of 4 ports; NMI
Status and Control Port, Enable/disable Port, Extended NMI Status Control Port, and the Software NMI
Generation Port. The Software NMI Generation port is a write-only port that is accessible by software.
The X'TS-300 does not utilize this port. The control and status registers for these ports are mapped to the
XTS-300 I/O address space that is inaccessible from outside PLO.

The two Programmable Interrupt Controllers (PIC) are responsible for all of the polling required by the
multi-level priority interrupt system. The PIC houses six I/O ports that are mapped to the XTS-300 I/0O
address space and are inaccessible by software from outside ring 0. This level of protection is reinforced by
the kernel setting the IOPL field to 0.

The DMA /Refresh Controller (DMA/R) consists of two cascaded DMA controllers. The DMA/R controls
access only to the floppy drive. Software does have control over the DMA /R, controller, in that it is responsible
for assigning a DMA channel and the memory address to be written to. However, it cannot access the DMA /R,
without the I/O addresses that are located in the kernel, that is set to PLO.

The EISA System Arbiter (SA) rotates use the EISA/ISA bus by a DMA channel, the Refresh Controller,
and the Host EISA/ISA Bus Master. All of the I/O ports are inaccessible from outside of ring 0.

3.6.2 Data Bus Controller (DBC)

The function of the Data Bus Controller (DBC) is to generate general purpose chip select signals, decade logic
for the keyboard, control the real-time clock, and configure the non-volatile memory (NVM) and the EISA
Bus Controller’s configuration registers. In addition, the DBC provides data buffer control, direct control
over the real-time clock, the keyboard controller and the BIOS, parity checking, and system configuration
RAM control.

The DBC directly interfaces with the memory data bus and the host bus while the data buffer control
interfaces with the MCC and the EBC. This is because the DBC handles transfers between the DRAM and
the EISA bus.

The DBC contains control registers that are mapped to the I/O address space. The registers are accessible
only by ring 0 software.

3.6.3 EISA Bus Controller (EBC)

The functions of the EISA Bus Controller (EBC) include generating the EISA bus clock and keyboard clock,
generating board level and CPU reset signals, directs steering logic of DBC and ISP, and controls interface
between EISA/ISA bus and Host Bus. The EBC also provides arbitration, some of the logic to interface
CPU with Co-processor, handles address translation between masters, slaves, and DMA devices for various
data cycles, and directly interfaces with CPU on the Host Bus.

25
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

The EBC maps its registers to I/O address spaces that cannot be accessed from outside PL0. These registers
are programmed by the system BIOS during hardware initialization. The EBC can operate in one of three
modes; standard, tri-state, or reserved. In order to change the operating mode, the user must have physical
access to the XTS-300 to change the level of two physical input pin signals. These two pins determine the
mode of operation.

3.6.4 Memory/Cache Controller (MCC)

The MCC controls local memory subsystem access from the CPU, the DMA devices and the EISA/ISA
masters. The MCC can support up to 4 banks of 1M/4M/16Mx36 DRAM and 512Kbyte external write-
back cache. The XTS-300 is equipped with only 16 Megabytes of memory and a 256 Kbyte SRAM external
cache. The X'T'S-300 does not use the external write-back cache. This is ensured by the bootloader disabling
this function.

The MCC can operate in one of three modes; standard, tri-state, or reserved. The XTS-300 does not use the
reserved mode. In order to change the operating mode, the user must have physical access to the XTS-300
to change the level of two physical input pin signals. These two pins determine the mode of operation.
Although registers do exist on the MCC, the XTS-300 does read or write to them.

3.6.5 Keyboard Controller and Keyboard

On the XTS-300, the keyboard is essentially an input-only device, though it is capable of performing as
an input-output device. The Keyboard Controller (KC) is a single-chip device consisting of the following
components:

e 8-bit CPU

2 Kbyte ROM program

256 bytes RAM

e Internal bus

8-bit Timer/Counter

8-bit status register

e 2 8-bit data registers

DMA is not used by the KC on the XTS-300 and RAM, which is not accessed by the system, is used by the
BIOS. All data transfers and keyboard/KC commands are sent via I/O port addresses, which are inaccessible
outside PLO.

The Secure Attention Key (SAK), which is used to invoke the trusted path function of the TCB, is provided
by the keyboard. The SAK allows the user to enter the trusted mode of operation or to abort a process
within the trusted mode. Detection of the SAK key being depressed is handled by the operating system
through interrupts. The SAK key for the XTS-300 is the break key.

26
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
3.6. PERIPHERALS

3.6.6 Real-Time Clock (RTC)

The purpose of the Real-Time Clock (RTC) is to keep track of the current date and time and to enable
the X'T'S-300 to set an alarm that performs a task when the set alarm time is reached. The RTC chip is
a Motorola MC146818 compatible that contains current date and time information and clock and control
registers. The RTC does not perform DMA nor does it utilize any of the several modes in that the clock
alarm bytes can be set. The XTS-300 does however, utilize the Periodic Interrupt Enable flag that causes
the RTC to interrupt the CPU 1024 times per second (called the repetition rate) to process alarm requests
by a process. The real time clock/calendar can be set by the process only if the process is running at PLO.
No registers are accessible from outside the TCB.

3.6.7 Floppy Controller and Floppy Disk Drive

The floppy controller in the XTS-300 is a single chip device that resides on the SCSI controller board but
works independently of the SCSI controller. The floppy controller controls a 3.5 inch microfloppy disk drive.
The drive can read and write either standard (1 Mbyte) or high (2 Mbyte) density disks. The XTS-300 uses
only high density disks. The floppy disk can contain data at various MAC labels (see Section 6.2.1.1, page
106); however, data flow is controlled by the operating system. This ensures that the correct address is being
accessed at all times. The floppy drive always passes information via the floppy controller and there is never
direct communication from the floppy drive to any other component.

The floppy controller consists of a First-In, First-Out (FIFO) buffer, Interface Logic, Crystal Oscillator
Input, Data Rate Selection, Write Clock Generator, Internal Registers, Precomp, Serial Interface Logic,
Data Separator, and a Drive Interface Controller. The floppy controller can perform DMA through the
DMA Controller. All commands to the controller are inaccessible from outside ring 0. Application do not
have read or write access to the floppy controller registers either directly, or through a TCB gate.

3.6.8 Multi-Channel Serial I/O Interface (SIO4)

The Multi-Channel Serial 1/O Interface card (SIO4) supplies four asynchronous serial ports to the XTS-300.
Each serial port on the card has its separate UART and support chips. Each UART defines a separate
I/O address space used to communicate with the XTS-300. The bus operation and I/O is the same as the
I/OAT43 that is described in Section 3.6.9.

3.6.9 Serial/Parallel Adapter Card

The Serial/Parallel Adapter Card (I/OAT43) provides 2 asynchronous serial ports and one additional parallel
port to the XTS-300. Connection is achieved via RS232 protocol and handshaking selection. The 1/OAT43
utilizes the universal asynchronous receiver and transmitter technology (UART). Each serial channel has its
own UART and each UART defines a separate I/O port address space for communicating with the XTS-300.
Each I/O port address corresponds with a particular UART register. Both devices (both ports) share the
host data bus. The mixing of data is not a concern however, because only one channel can be selected
for each I/O. This means that only one channel at a time is ever being used. Neither DMA transfers nor
memory-mapped I/O are used by the I/OAT43.

27
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

3.6.10 Video Controller

The video AVGAZ2 for the XTS-3001s a 512 Kbyte VGA controller with built in digital-to-analogue conversion,
Clock Synthesizer, System Bus, and Feature Connector Interface. The AVGA2 has a 16-bit interface and a
write buffer. On the X'TS-300, the AVGA2 is essentially an output only device in that data flows only from
the XTS-300 console driver to the video display. The AVGA2 handles only one level of data at one time.

The AVGA2 communicates with the host via registers that are accessible only through 1/O address space.
The I/0O address space is inaccessible from outside PLO.

3.6.11 SCSI Host Adapter

The SCSI host adapter connects the EISA bus and the 8-bit SCSI bus. It also provides an interface between
the hard disk and the cartridge tapes and the application and system software. The XTS-300 supports
only one SCSI host adapter per system. The adapter is capable of performing DMA transfer to the system
memory. It is also capable of performing scatter/gather functions; however, this function is not utilized by
the XTS-300. There are three I/O ports on the adapter that are recognized when it is running in standard
mode; the control and status port, the command and data port, and an interrupt flag port. These ports
cannot be accessed from outside PLO.

Although only three devices, hard disk, floppy drive, and tape drive, are supported by the adapter on the
XTS-300, a total of 7 devices can be supported. The SCSI Host Adapter operates in standard mode and
does not support “fast synchronous” transfers. Microcode exists on the adapter, however, it cannot be
downloaded during system operation. The adapter controls data transfer to and from the hard disk and the
cartridge tape. Separation of data is dependent upon the ring 0 software.

3.6.12 Secure Communications Subsystem (SCS)

The SCS is a stand-alone machine that can be connected to the XTS-300 for remote use. The ethernet card
is the only component that is part of the evaluated product. The SCS consists of the following components:

Intel 486 Motherboard w/CPU
e 8 MBytes Memory

e IDE Controller

Floppy Disk

80 MByte Hard Disk

Two ethernet controller cards

Ethernet drop cable

e Thin Net cable

28
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
3.6. PERIPHERALS

The Elitel6 Thin Coax Lan Adapter is an Ethernet adapter that connects the XTS-300 to the SCS. Two
adapters actually complete the connection; one adapter is internal to the XTS-300 while the other is located
on the SCS. Only the adapter that is located on the XTS-300 is part of the evaluated configuration. The
Trusted Computing Base (TCB) communicates only with the Ethernet adapter located on the XTS-300.

The Ethernet adapter features 16 Kbytes of dual port shared memory and 32 registers mapped to the host
address space. The Elitel6 uses the 10Baseb (BNC) connections though 10Base2 (AUI) is also an option.
The Elitel6 is comprised of a Bus Interface, a Network Interface Controller, a Serial Network Interface, a
Coaxial Transceiver Interface, a shared memory buffer, and a 64 Kbyte ROM BIOS socket. The ROM BIOS
is not provided for the XTS-300; however, the socket is left intact.

There is no interaction between the Elitel6 and any other peripheral device on the system. Also, the Elitel6
is a single level device. The device drivers in the operating system handle the separation of data.

3.6.13 Hardware Initialization

The system BIOS provides a means for software to communicate with hardware and vice versa. The system
BIOS occupies portions of the addresses ranging from 0xA0000 to 0xFFFFF. The Opsys Loader is loaded
by the BIOS and, once loaded, disables the BIOS from being invoked by the system again. In addition, the
vector table used to invoke the BIOS is destroyed by the Opsys Loader. For more information on testing
and initialization, see Section 7.6, page 133 on system integrity.

3.6.13.1 Power On Self Test (POST)

POST initializes some data structures, tests system components, and boots the operating system. More
specifically, POST writes to the CMOS RAM and the low memory information regarding the system con-
figuration. POST tests the system, the ROM and the RAM. POST also sets the interrupt vector table and
checks for peripheral equipment.

To instantiate the POST, one of three methods can be employed; turn the XTS-300 on; press the reset
button on the Intel 486; or press (control)-(alt)-(delete) on the keyboard if DOS is currently booted.

3.6.13.2 BIOS Setup Utility and Diagnostics and Utility Software

The BIOS setup utility retrieves information about the hard disk drive, floppy drives, monitor, date and
time and stores the information in CMOS RAM. The diagnostics and utility software checks the system
components and reports any errors to the operating system. To instantiate the BIOS setup utility or the
diagnostics and utility software, the (delete) key must be pressed when prompted at system startup.

29
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 3. HARDWARE OVERVIEW

This page intentionally left blank

30
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300

Chapter 4

Software Overview

4.1 Introduction

This section provides a general description of the software portion of XTS-300, STOP 4.1. The software
components of the Trusted Computer Base (TCB) are the Security Kernel, TCB System Services (TSS),
and the Trusted Software. There is also an untrusted software component of the supplied system called
Commodity Application System Services (CASS). The first portion of the Software Overview is an intro-
duction which briefly describes each of the software components. This is followed by a description of the
process environment. Since the process is the major active entity (i.e., that which causes information to
flow or changes the system state), the discussion of how the software components fit together to form the
process environment is a precursor to the more detailed discussions that follow. The kernel is presented first,
followed by a discussion of system initialization. TSS, Trusted Software, and CASS are then discussed in
detail, each in its own subsection.

4.2 Software Components

The Security Kernel software occupies the innermost and most privileged ring and performs all Mandatory
Access Control (MAC). The kernel provides a virtual process environment, which isolates one process from
another. The kernel implements a variation of the reference monitor concept. When a process requests access
to an object, the kernel performs the access checks, and, given that the checks pass, maps the object into
the process’s address space. Subsequent accesses are mediated by the hardware. The Security Kernel also
provides I/O services and an Interprocess Communication (IPC) message mechanism. The Security Kernel
is part of every process’s address space and is protected by the ring structure supported by the hardware.

The TSS software executes in Ring 1. TSS provides trusted system services required by both trusted and
untrusted processes. TSS has the responsibility for creation and loading of both trusted and untrusted
programs in STOP 4.1. TSS converts the flat kernel segment structure into a hierarchical file system. TSS
software enforces the Discretionary Access Control (DAC) policy to file system objects and segments.

Trusted Software performs security-relevant functions and executes in Ring 2. Software is considered trusted
in STOP 4.1 if it performs functions upon which the system depends to enforce the security policy (e.g.,
the establishment of user authorization). Some processes require privileges (see Section 6.3.4, page 116) to
perform their functions. An example of a process that requires privileges is the Secure Server, which needs
access to the User Access Authentication database, kept at system high access level, while establishing a
session for a user at another security level. Figure 4.1 depicts the structure of a trusted process running on

XTS-300.

CASS also executes in Ring 2. CASS provides a UNIX-like interface for user-written applications. The
purpose of CASS is to make the multilevel security execution environment transparent to software running

31
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

Users
Operating System
Services Domain Trusted System Software (TS)
(Ring 2)
Trusted System
Services Domain TCB System Services (TSS)
(Ring 1)
Kernel Domain Security Kernel
(Ring 0)

COTS 486 PC/AT Components

: Trusted Computing Base

Figure 4.1. XTS-300 System Diagram — TCB Process

32
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.2. SOFTWARE COMPONENTS

in the Application Domain (Ring 3). Figure 4.2 depicts the structure of an untrusted process running on

XTS-300.

Users
Application
Application Runtime
Domain
Software Libraries
(Ring 3)
Operating System
Services Domain Commodity Application System Services
(Ring 2)
Trusted System
Services Domain TCB System Services (TSS)
(Ring 1)
Kernel Domain Security Kernel
(Ring 0)
COTS 486 PC/AT Components

: Trusted Computing Base

Figure 4.2. XTS-300 System Diagram — Untrusted Process

The virtual address space for a process is depicted in Figure 4.3. The first 10 segments are shown to contain
global information. These segments are included in every process’s address space. All global data segments
(kernel data, memory map, and the global pool) are accessible only by the kernel. They contain data
structures important to the management of the system. The other segments contain the object code for the

kernel, TSS, and CASS.

The Binary Compatibility Standard (BCS) segments exist to implement the BCS calling interface for Ring
3 programs and trusted programs running in Ring 2. The memory space for BCS is implemented by special
code and data “super descriptors.” The two descriptors contain the same base address. The descriptors are
separate because the Intel 486 does not allow both execute and write access to the same segment through the
same descriptor. However, the end result is that Ring 2 and Ring 3 processes can access all BCS segments

33
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

Permissions DPL Segno
Special Gates
0-1 CASS Gate Descriptors (pomtmg
elsewhere in

global memory)

r,w 0 2 Kernel Declared Data 1

r,e 0 3 Kernel Text |

r,e 1 4 TSS Text |

e 2) CASS Text Global

r,w 0 6 Memory Map |

r,w 0 7 Global Pool

re 3 8 BCS Text S]p)eaal. Super

escriptors

r,wW 3 9 BCS Data/Stack 1

r,w 0 10 Kernel Data (PDS) 1

r,w 1 11 TSS Data (PLDS) |

W 0 12-17 Kernel Temp Data Process Local

18-31 Available For Growth |

r,w 0 32 Kernel Stack |

r,w 1 33 TSS Stack MIN_USER_SEGNO

LW 2 34 0SS Stack |

r,w 1 35-99 TSS Data !

r,w 2 100-127 CASS Data MIN_OSS_SEGNO

FINAL: July 11, 1995

Figure 4.3. Process Virtual Memory Address Space

34

Final Evaluation Report Wang XTS-300
4.2. SOFTWARE COMPONENTS

Segno
0 Kernel Declared Dafta 1
and Kernel Text,
1-3 (not used |
4 TSS Text |
5 CASS Text Global
6 Memory Map |
7 Global Pool |
8-9 (not used)]
10 Kernel Data (PDS) 1
11 TSS Data (PLDS) |
12-17 Kernel Temp Data |
18-31 (available for growth) |
32 Kernel Stack Process Local
33 TSS Stack |
34 OSS Stack |
35-99 TSS Data |
100-127 S 1CASSD Textb k |
0S Text, Data, Stack,
128-1023 Shared Libs !

Figure 4.4. Process Linear Memory Address Space

for both execute and write access. The BCS memory space contains the code, static data, dynamic data,
and stack. The BCS segments are completely overlapping. All memory allocated to such segments for a
process is potentially available to that process.

However, segment accesses from BCS segments to non-BCS segments is prevented by the hardware and the
TCB. The super descriptors refer to distinct regions of the PDIR from those used by the TCB. The kernel
prevents allocation of Ring 3 segments below PDIR entry 128 which is beyond all the entries needed by the
TCB. Further, a full-size (1024-page) pagetable is allocated for each valid PDIR entry for a BCS segment.
Each time an invalid PDIR entry is referenced by a process, a full-size pagetable is allocated during page
fault processing.

Transfers to BCS segments from an inner ring are performed by setting the CS register to point to the BCS
code segment and by setting the DS and SS registers to point to the BCS data segment.

BCS segments are not mapped from the file. The code and data are copied into memory. As a result, changes
to the access of the program file do not affect a process currently executing the file. Access changes to the
BCS segments by another process cannot be performed because the BCS segments are treated as temporary
segments. Access changes to temporary segments are disallowed by the TCB.

The BCS segments require a contiguous range of at least 512 PDIR entries so that a minimum 2 Gbyte is
available for Ring 3 programs. The BCS segments encompass a total of 896 PDIR entries.

As shown in Figure 4.3, the rest of the process address space is private to each process. The kernel, TSS,
and CASS all have associated process-local data structures contained in the data segments. Each ring also
has an associated stack private to the process. Even if a process is executing in the kernel, it does not have

35
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

direct access to other processes or objects to which those processes have access. An object must be mapped
into the currently executing process’s address space in order for the process to access the object.

The Intel 486 provides for a Paging Directory (PDIR) between the segment descriptors and pagetables to
allow greater flexibility in implementing the operating system. The PDIR defines a linear address space.
Segment descriptors that define a portion of memory point at PDIR entries instead of pagetables (see Section
3.3.3.1, page 14 for more details on pagetables and segment descriptors). The linear address space is defined
in Figure 4.4. Each process has its own PDIR. Process-local segments point to one, unique PDIR entry and
use the same entry that is equal to the segment number. In XTS-300, virtual addresses are translated to
linear addresses then translated to physical addresses.

4.3 Process Environment

The virtual process environment on XTS-300 is defined by the four hierarchical domains which are enforced
by the hardware ring mechanism. The domain of greatest privilege is Ring 0, that of the kernel. The domain
of least privilege is Ring 3, that of untrusted processes. While executing within a domain, a process has
direct access only to the resources of that domain and those of less privileged domains. Processes have other
attributes which characterize them in addition to the domain in which they execute. MAC labels, integrity
levels, privileges, and capabilities are examples. For more information, see Chapter 6.

The environments for each ring are set up by the adjacent ring that is more privileged. When a process is
being created, the kernel creates the process-local Ring 0 and Ring 1 environments used for process execution.
TSS creates the local Ring 2 environment, and if the process is untrusted, CASS creates the local Ring 3
environment.

The following two types of process environments are supported on XTS-300:

e Untrusted Application Process

e Trusted Application/System Process.

The environment for each type of process is described below.

4.3.1 Untrusted Process Environment
For an untrusted process, the environment consists of four hierarchical domains:

Ring 3 The Application or User Domain. For user-written applications, this is the only domain
available. Runtime library support software for an untrusted process also runs in this domain.

Ring 2 The Operating System Services (OSS) Domain. CASS software runs in this domain. The
primary purpose of CASS is to convert the primitive TCB interface into one usable for
applications software. CASS also provides I/O and process control services to user-written
applications. CASS is considered to be high integrity system software. As such, the CASS
layer provides untrusted operating system services to user-written application software. It
ts not part of the TCB.

36
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.3. PROCESS ENVIRONMENT

Ring 1 The TSS Domain. The primary purpose of the software in the TSS Domain is to provide
the file system hierarchy. TSS also loads trusted and untrusted programs in STOP 4.1.
Ring 0 The Kernel Domain. The Security Kernel portion of the TCB runs in this domain. A subset
of kernel services are callable from untrusted software running in Ring 2.
The software in the Kernel, TSS, and OSS Domains is mapped into the address space of all untrusted

processes.

The untrusted environment is restricted to the following:

e Execution within the OSS and Application Domains
e Execution with integrity below the operator integrity level
e Execution with no Security Kernel privileges

e Establishment of an untrusted process via the run command or the start_daemon program in Trusted
Software or from the system prompt (if programs with an integrity level below operator have been
installed via the tp_edit utility).

4.3.2 Trusted Process Environment
For a trusted system or application process, the environment consists of three hierarchical domains:

Ring 2 The OSS Domain. This domain contains various trusted system functions, collectively re-
ferred to as Trusted Software. This portion of the TCB provides specialized security-relevant
services.

Ring 1 The TSS Domain. This domain contains the TSS portion of the TCB.
Ring 0 The Kernel Domain. The Security Kernel software runs in this domain.
Software in the Kernel and TSS Domains is mapped into the address space of all trusted processes. A

degenerate case of a trusted process is a kernel process whose environment consists entirely of the Kernel
Domain. For a discussion of kernel processes, see below.

4.3.3 TCB Interface

There are four different mechanisms, or entry points, that provide access to the TCB. The entry mechanisms
to the TCB are:

e The Kernel gate that causes a service to be performed on behalf of the caller, followed by a return.

e The TSS gate that also involves performing a service for the caller, followed by a return.

e The Secure Server as invoked by the Secure Attention Key, that establishes a connection with the TCB
for the purposes of invoking a trusted process.

37
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

e The hardware, which includes instruction execution and traps, exceptions processing, and interrupts
from I/O devices.

4.4 Security Kernel

This section provides a general description of the Security Kernel. The kernel architecture, security-relevant
features, and kernel entry mechanisms are discussed as well as other important kernel features. The areas
of the kernel discussed in more detail are: segment management, process management, device management,
memory management, scheduling, and the support functions.

4.4.1 Security Kernel Architecture

The Security Kernel structure consists of several layers that are designed to deal with simple to complex
data structures from lower to higher levels, respectively. Figure 4.5 shows the hierarchical breakdown of the
kernel structure.

Each separate entity within the diagram represents a major module. A major module in STOP 4.1 is defined
as a set of files consisting of one or more C or assembly language routines that perform related functions.
The layers are positioned based on the dependence by a layer on functions performed in the lower layers.
For example, Kernel Entry is at the highest position in the kernel hierarchy because it must be able to call
any layer in response to an invocation of the kernel. All the kernel modules are discussed in the paragraphs
below with the exception of Startup, which is discussed in Section 4.5, page 60.

Processes may execute code in a kernel module as a result of a call to a kernel gate to request performance
of a service. Kernel processes, however, are entirely contained within the kernel. That is, kernel processes
execute only kernel code, execute only within the Kernel Domain, and are not visible outside the kernel.
The kernel processes are the following:

e The Audit Process

The System Sync Process
e The Kill Process
The Scheduler Process.

The kernel controls access to three types of objects: devices, processes, and segments. For mandatory
access, the Bell and LaPadula model is enforced for the following types of accesses: process-to-segment,
process-to-device, process-to-process. For a more thorough discussion of how mandatory access is applied
in STOP 4.1, see Section 6.2.1, page 103. Descriptors are built by the kernel for segment references. The
hardware enforces access restrictions on ensuing references. Process-to-process references occur via IPC
messages which are mediated on each occurrence. The interfaces available to directly obtain information
from a process are provided by the get_process_status, get_process_access, and get_process_family
gates that return information, such as real user and group id, priority, clearance, effective and maximum
privilege, subtype list, CPU utilization time, current access levels, and process family id. The gates listed
above may be called from untrusted Ring 2 software, such as CASS.

38
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.4. SECURITY KERNEL

Highest Layer

Entry Kernel Gate | Trap Manager | Startup | Metering Collection
_______ Swtdwon Shutdown
Audit/Sync Process Audit Process | Sync Process
Process | IPC Message Kill
Process
Manager Manager Process
Device Device Manager
AST Lock
Segment Segment
Manager | Manager | Manager
. File System
File System
Manager
Floppy SCS Interrupt Serial Console Pseudo-TTY
Driver Driver Manager Driver Driver Driver
Physical 1/0 g
Terminal | SCSI Disk | SCSI Tape | SCSI Controller
Services Driver Driver Driver
Audit Audit Functions
Connection

List Manager

RTC RTC Manager
Global Pool
Global Pool obalFoo
Manager
Memory Memory Manager
. Service Scheduler | Scheduler PIT
Service . .
Functions Functions Process Manager
L owest L ayer

Figure 4.5. Kernel Hierarchy Diagram

39
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

For segments, the kernel allows only the owner to modify the access attributes unless the process has the
privilege to override this protection. The kernel also manages segment locks. TSS has the responsibility to
enforce discretionary access for segments. For devices, the kernel enforces discretionary access while mapping
a device to a process and on access changes on the device. The kernel also mediates access when sending
IPC messages from one process to another. A third mechanism by which access is controlled is subtypes.
Subtypes can be used by a process to get exclusive access to a segment or a device. Subtype access is
enforced when segments and devices are mapped into the address space of a process and when sending IPC
messages. In addition to security-related functions, the kernel performs basic operating system functions
such as: resource management, scheduling, and trap/interrupt management.

4.4.2 Kernel Entry and Return

Once initialized, the kernel can only be invoked via the kernel gate, hardware traps, faults, and interrupts.
The primary purpose of the kernel gate is to validate access of the caller and to call the appropriate routine
to perform the requested function. Since all kernel calls from outer rings are first processed by the kernel
gate, kernel calls are referred to as kernel gate functions. The caller supplies the kernel function code and a
pointer to an argument list contained in the caller’s address space.

Entry into the kernel is restricted through the use of the gate. Access is restricted by defining a gate segment
descriptor for the kernel (the same is done for TSS). The gate descriptor defines a procedure entry point,
and specifies the privilege level required to enter the procedure. In XTS-300, there is only one true kernel
gate. All kernel gate descriptors point to the same location within the kernel (to a routine that sets up
registers and builds the argument list for the kernel gate processing routine). The kernel code segment is
protected by defining the DPL of the kernel segment to be 0 and by allowing only read and execute access
while executing in Ring 0. The segment descriptor for the kernel contains this information.

The processing for a gate call is as follows. First, the process is set non-interruptible by the Time Slice
Clock (TSC) Manager. The gate function code is then validated by checking to be sure that the supplied
code is greater than 0 and less than or equal to the maximum number of kernel gate functions in the system
(which is currently 47). The address of the routine to be called is obtained through the kernel gate table that
contains, for each gate function defined in the kernel, an address, the least privileged ring number allowed
to call the gate function, and the number of bytes in the argument list not including the ring of the caller
argument. The ring of the caller is verified by hardware prior to entering the kernel. However, since there
is only one kernel gate, the DPL for the kernel segment is set to 2. For gates that can only be called from
Ring 1, the ring of the caller is verified again by the kernel gate routine by taking the maximum of the CPL
and the RPL and comparing that to the ring specified in the kernel gate table. The ring of the caller is
obtained by taking the maximum of the CPL and the RPL. The ring of the caller must be less than the ring
number specified in the kernel gate table. The arguments for the called routine are copied from the caller’s
stack into a local buffer. The ring of the caller is appended to the argument list before the call to the gate
is performed.

The kernel gate routine copies the argument list from the local buffer into the kernel stack. The kernel gate
does not check the form or the content of the argument list. However, the kernel gate knows the number
and size of each argument that is expected for each kernel function. The kernel gate calculates the length
of the argument list itself. The specified kernel function is then called. Each kernel function validates the
arguments passed to it by validating the ring number in each argument pointer. This prevents malicious use
of argument list pointers (a pointer to a more privileged ring than the caller).

40
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.4. SECURITY KERNEL

The only value returned from a kernel function is the error code that indicates an error from the function
itself, an error in kernel gate processing, or no error. Prior to returning the error code to the user, a check
is made for any outstanding commands or signals and for TSC expiration.

4.4.3 Segment Management

Segment management is performed in the kernel by four different modules: the Segment Manager, the Active
Segment Table Entry (ASTE) Manager, the Lock Manager, and the System Sync Process. The Segment
Manager handles all operations on segments including creation, deletion, access control, access management,
and characteristic changing and reporting. The ASTE Manager performs all operations on each ASTE
including maintenance of the binary tree of ASTEs.!

Segments appear in memory exactly as they appear on disk. Disk segments are made up of blocks which
are the same size as a memory page, 4096 bytes. A segment can be of length zero to 1024 blocks or memory
pages. This section discusses segments as seen and as manipulated by the software.

Segments can be one of two types: permanent or temporary. Permanent segments may be created on any
filesystem. Each permanent segment has an associated Segment Branch Table Entry (SBTE) which is the
data structure most central to segment management functions. Figure 4.6 depicts the SBTE. SBTEs are
stored in the disk branch blocks of the filesystem. The branch blocks are the repository on disk which
contain information about the blocks belonging to a particular segment. The SBTE contains the segment’s
name, its access attributes,? its length, and the logical block numbers of its continuation blocks.? The SBTE
also contains a flag field. Currently, the only flag used is one that indicates whether or not the segment is
static. If the static flag is set, the segment’s access attributes cannot be changed and the segment cannot
be deleted. For those permanent segments with the static flag not set, attributes including the MAC label,
Access Control List (ACL), owner, and subtype may be modified. The static flag is used only for the root
segment of a filesystem.

The segment name is created by concatenating the identifier of the filesystem on which the segment was
created, the partition supplied by the owner, and a unique integer portion supplied by the kernel. The
partition (8 bits in length), along with the unique integer (40 bits in length), becomes the segment unique
identifier (uid) (the total length is 48 bits). The segment uid is the only portion of the segment name kept
on disk. When a segment is read in from disk, the File System Manager inserts the filesystem identifier from
the super page? into its portion of the segment name. The filesystem identifier and the segment uid together
become the unique name of the segment for the kernel. The segment name field is used to order the binary

tree of ASTEs.

The SBTE contains the locations of a continuation block that holds pointers to the data blocks on disk that
comprise the segment. A continuation block is required because there is not enough room in the SBTE to
list the maximum 1024 blocks that make up the segment. Because a disk block and a memory page are the
same size, each can hold up to 1024 descriptors. In this case, the SBTE contains a logical block number that
points to the location of the continuation block instead of a list of direct logical block pointers.

Temporary segments (data only — no branch entry is created) are always created on the root filesystem, the
filesystem from which the system was booted. An in-memory SBTE is created when a temporary segment is

1For more information on the ASTE Manager, see Section 4.4.3.2, page 45.
2These are listed in Section 5.2.1, page 99.

3See Section 4.4.5.2, page 52, for more information on this.

4See Section 4.4.5.2, page 52, for more information on the File System Manager.

41
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

Branch Number

Mount Table Entry Index

Segment Name

Segment Access Information

Segment Length

Pointer to logical block containing

continuation blocks

Flags

Filler (to make branch entry 32 words)

FINAL: July 11, 1995

Figure 4.6. Segment Branch Table Entry (SBTE)

42

Final Evaluation Report Wang XTS-300
4.4. SECURITY KERNEL

created and is deleted when the segment is no longer mapped into any process’s address space. Temporary
segments can only be mapped by processes at the same MAC label at which the temporary segments are
created. The MAC attributes of temporary segments cannot be modified. However, the DAC attributes
may be changed by the kernel.> Temporary segments can either be private or shared. Figure 4.7 (page 44)
depicts the data structures relevant to segment management and their relationships.

Each ASTE, Page Table, Connection List Entry (CLE), and Extent Lock Entry is a global data structure.
Each Known Segment Table Entry (KSTE) and Segment Descriptor is local to a process.

The ASTE is the main control structure for all active segments in the system. The ASTE contains the
File System Identifier, SBTE that is copied into the ASTE from disk, a pointer to the connection list, a
pointer to the page table that contains the addresses in memory where the pages of the segment reside, the
binary tree linkage, a pointer to the list of locked extents for the segment (see Section 4.4.3.3, page 46, for a
discussion of locked extents), and a flag field. The connection list is used to find out the processes that have
current access to the segment indicated by the ASTE and where they are mapped within the process. Each
CLE contains the process index and process local segment number for each process that has the segment
indicated by the ASTE mapped into its address space. CLE’s are managed by the Connection List Manager.
The segment descriptors provide pointers to the page tables for virtual to physical address translation. The
segment descriptors also indicate the type of the segment and the associated DPL.

The Known Segment Table is built in the software Process Descriptor Segment (PDS).% Each KSTE contains
the modes in which a process may access a segment, as well as a pointer to the associated ASTE, the segment
name, and a flag field. The flags are used to indicate whether or not the segment has been deleted, the access
has been changed, the length has been changed, or the segment has been mapped.

4.4.3.1 The Segment Manager

The Segment Manager performs the following functions on segments:

e (Creation, growth, and deletion

e Mapping and unmapping within a process’s address space

Access setting and getting

Status attribute setting and getting
e Synchronization

Revocation of access when access attributes have been modified.

In addition, the Segment Manager supports wiring of segment data pages into memory (i.e., marking of pages
to indicate they are not to be removed from memory) and manages the pertinent kernel data structures that
deal with active segments (i.e., connection list, known segment table, and segment descriptors). For details
on how pages are wired, see Section 4.4.6.1, page 5b.

5TSS does not allow security attribute changes to temporary segments, so from a user’s point of view, no access attributes
for temporary segments can be changed.
6See Section 4.4.4.1, page 47, for a description of the PDS.

43
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

KSTE

Flags

Modes

Filesystem Mount Index

Pointer to ASTE

Segment Name

CLE

(Process Local Information)

Segment
Descriptors
ASTE
File System Identifier
Branch Information (SBTE)
Binary Tree Linkage
ASTE Chain Linkage PTE

Pointer to Page Table ——|

Pointer to Connection List

Pointer to Lock List

Flags

Extent
Lock

Entry

(Global Information)

PTE

FINAL: July 11, 1995

Figure 4.7. Segment Management Data Structures

44

Final Evaluation Report Wang XTS-300
4.4. SECURITY KERNEL

The kernel gate functions supported by the Segment Manager are callable only from Ring 1, since segments are
not directly visible to software running in Ring 2 and above, with the exception of the get_segment_status
gate. The kernel gate functions in the Segment Manager perform various operations on segments for the
caller, including creation, deletion, status and access retrieval, mapping and unmapping, setting status and
access, synchronizing a segment, and wiring and unwiring of segment pages.

There are two ways by which access to a segment can be modified or revoked: setting the segment access
attributes or deleting the segment. The size of a segment may also change. When the access or size changes,
a number of activities occur. The segment descriptors for each process that has the segment mapped into its
address space are found using the connection list linked to the ASTE. Each appropriate segment descriptor
is marked invalid. A flag indicating the type of change is set in the KSTE. The next reference to that
segment will cause an invalid segment trap for each process that currently has access to the segment. The
invalid segment trap is handled by the Trap Manager.” The Trap Manager will then call a routine in the
Segment Manager to recheck the segment’s access or status attributes. If the mandatory access attributes
have changed, the Segment Manager will then revalidate access to the segment and update the segment
descriptor accordingly. If only discretionary access has changed, then the trap type is modified accordingly
and it is reflected outward to TSS in order to perform DAC revalidation.

Segment growth is performed explicitly for certain segments, such as the audit segment, and TSS file seg-
ments. If an I/O to a segment will require space beyond the current segment, the kernel allocates another
set of memory pages for the additional segment. In the case of BCS segments, if an I/O operation gener-
ates references to addresses beyond a segment boundary, then a page fault is generated, causing the kernel
to allocate memory pages for an additional BCS segment. All other attempts to write beyond a segment
boundary cause a general protection trap. Such traps are reflected to the application running in either Ring

2 or Ring 3.

There is a feature of the Segment Manager known as soft delete which is used to support the UNIX semantics
of file deletion. If a soft delete of a segment is requested, the segment remains in existence and the segment
descriptors are left as valid. The segment will be deleted once the last unmap of the segment occurs.

If the soft delete is not requested, the segment is deleted immediately. All the segment descriptors belonging
to processes that have the segment mapped are marked as invalid. Any subsequent access for that segment
by a process results in a missing segment fault. The disk space for that segment is marked as free and the
branch entry will be deleted. Every CLE for that segment and the associated ASTE are returned to the
global pool .®

4.4.3.2 The ASTE Manager

The Active Segment Table Entry Manager handles all operations on each ASTE. The ASTE Manager
maintains an active segment chain, that includes mapped and previously mapped permanent segments and
a binary tree that includes permanent and temporary shared segments. The ASTE Manager allocates page
tables from the global pool based on the size of the segment being mapped. The main synchronization
routine by which the System Sync process® traverses the active segment chain is contained in the ASTE
Manager. Finally, the ASTE Manager is responsible for releasing any unmapped segments on a filesystem

"For more information on the Trap Manager, see Section 4.4.8.1, page 57.
8 For more information on the global pool, see Section 4.4.6.2, page 55.
?For more information on the System Sync process, see Section 4.4.3.4.

45
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

being unmounted. The ASTE Manager’s functions are not visible outside the kernel. No kernel gate functions
are supported in this module.

The active segment chain processing supports the System Sync Process in the following manner. When the
last unmap of a segment occurs, its ASTE is moved from its current position on the chain to the tail. As
a result, the least recently used unmapped segments are nearest to the top of the chain and are the first
candidates for removal. Both the ASTE chain and the associated management mechanism are local to the
ASTE Manager.

Previously mapped segments exist primarily as a performance enhancement to keep the number of disk
I/Os to a minimum. They facilitate segment map and unmap operations for segments that are often used.
For a mapped segment, if a branch is modified, a flag is used to indicate the fact for subsequent system
synchronization activity. Mapped segments are synchronized upon periodic system sync process activation
or by a specific request to do so. If the mandatory attributes of a segment are changed, the segment is
written to disk immediately.

Although the number of ASTEs is not actually limited, there is a threshold of the number of ASTESs that will
cause a previously mapped segment to be unlinked from the ASTE chain. The threshold (which is currently
1024) is the sum of permanent and temporary ASTEs. The idea behind this threshold is to allow more
previously mapped segments when the system is lightly loaded and less when heavily loaded, when memory
loading is the driving performance factor. As long as the threshold is exceeded, each create segment call will
cause the chain to be searched, looking for a segment to flush.

4.4.3.3 The Lock Manager

The Lock Manager supports UNIX file locking functions, including: read-only locks, write locks, locking and
unlocking of file extents (portions of segments), blocking and non-blocking lock requests, reading and writing
of locks, partial unlocking of locked extents, combining existing locked regions with similar lock requests,
deadlock detection, and modification of the current lock type based on the new request type. The Lock
Manager allows a blocking lock request to be broken by signals (IPC messages). The Lock Manager cleans
up locks during segment unmap, process deletion, and segment (file) deletion operations.

The Lock Manager supports a kernel gate function, callable from Ring 1, to perform locking and unlocking
of segment extents. The rest of the functions in this module are not visible outside the kernel.

To perform a lock request, the calling process must be at the level of the segment and have read and write
access to the segment. The exception to the mandatory access rule is that if the lock request is for Ring 1
and the request is for a read-only lock, then only read access to the segment is required. The calling process
must also have the segment subtype on its subtype list. During an unlock operation, MAC and subtype
access checks are not performed since the caller must be the one who obtained the lock.

When a process unmaps a segment, all the lock entries!? for that process are removed. When a segment is
deleted, all the lock entries are returned to the system. Any processes that are blocked on a lock for that
segment are awakened.

10Lock entries contain the information about a segment, of which a portion may be locked. Lock entries are linked off the
ASTE for the associated segment.

46
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.4. SECURITY KERNEL

4.4.3.4 The System Sync Process

The System Sync Process is a system daemon responsible for synchronizing modified segment branch entries
and data pages, modified device branch entries (for a discussion of branch entries, see Section 4.4.5.1, page
51), and super pages (see Section 4.4.5.2, page 52, for details on super pages) for mounted kernel file systems.
The System Sync Process, which is created during system initialization, runs at an interval specified by a
site-configurable parameter, nominally set at two minutes.

During the synchronization process, the SBTE, the continuation blocks, and the associated data pages
for each currently mapped segment with a modified SBTE are written to disk. Only those data pages
that changed are synchronized. The operation continues until all modified permanent segments have been
synchronized. Temporary segments are never synchronized. If a filesystem has not been mounted for read-
only access, its super page is synchronized while the System Sync Process is active.

4.4.4 Process Management

Process Management is accomplished by three major modules in the kernel. They are: the Process Manager,
the IPC Message Manager, and the Kill Process.

4.4.4.1 The Process Manager

The Process Manager provides capabilities for process creation and deletion, manipulation of process at-
tributes, maintenance of process family relationships, and support of event-driven application software.
Process management data is stored in two segments local to a process:'' the PDS and the Process Local
Data Segment (PLDS). Figure 4.8 depicts the contents of the PDS and PLDS.

Figure 4.8 contains a representation of the PDS. The PDS points to tables containing process-related
information. It also contains information for each device and segment mapped into the address space of
the process. A Known Device Table Entry (KDTE and a KSTE exist for each mapped device or segment,
respectively.

The PDS is accessed only by the kernel. The PLDS is primarily used as a data segment by TSS. However,
the first page of the PLDS is used for communication between the kernel and TSS, and is modifiable by
both. There is also an Active Process Table Entry (APTE) for every process. The APTE is a global data
structure that contains various identifying information, such as the access structure (discussed in Section 5,
page 97) for a process. An APTE is built from the global pool. Figure 4.9 depicts some of the information
contained in the APTE.

Several kernel gate functions are supported by the Process Manager. Most are callable from Ring 2 untrusted
software. They include services which get and set process access, get and set process family information, get
and set process status, retrieve system parameters, suspend execution, and release the process. There are
two gate functions in this module callable only from trusted software (i.e., the caller has privileges) running
in Ring 2. These are gate functions that perform setting of process family identifiers and process family
subtypes. The rest of the gates supported by the Process Manager are callable only from Ring 1. These
services create a process, duplicate a process, and perform returns from interrupts.

HFigure 4.3 (page 34) shows the locations of the two segments within a process.

47
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

FINAL: July 11, 1995

Process Descriptor Segment (PDS)

page 0 Pointer to APTE
Process Vector Index
Pointer to Process LDT
Maximum Segment Number
Maximum Device Number
Flags

Known Device Table Entries

pages 1-4 Known Segment Table Entries

Process Local Data Segment (PLDS)

Argument Segment Name

Parent Proc UID

Child Proc UID

Kill/Trap/Interrupt Handling

Trap/Interrupt Data

Maximum Device Number

Audit Flags

Minimum MAC Label for Audit

Performance Data

(ring O - ring 1 communications)

Figure 4.8. Process Management Data: PDS and PLDS

48

Final Evaluation Report Wang XTS-300
4.4. SECURITY KERNEL

access

command queue

interrupt queue

IPC queue

effective privilege

maximum privilege

segment subypes

device subtypes

process subtypes

process index

real user

real group

clearance

family identifier

pointer to process’ PDIR pagetable

Figure 4.9. Active Process Table Entry (APTE)

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

The Process Manager allows a process to create another process that is closely associated with the original
process. In this case, the original process is called the parent, the new process is called the child. The child
process may be created with a MAC label which dominates that of the parent. This operation is constrained
by the system maximum MAC label and the parent’s clearance in that the parent must be able to write to
the MAC label of the child. In addition to a process identifier, unique for each process, the kernel maintains
a family identifier which associates a parent with its children. The subtypes are also considered part of the
family data. Both the family identifier and the subtypes are contained in the APTE. The kernel maintains
the parent and child identifiers in the PLDS during process creation.

The APTE also includes fields for effective and maximum privilege set (see Section 6.3.4, page 116). The
effective privilege set reflects the current set of privileges by which the process operates. The maximum
privilege set is the complete set of privileges the process can ever have. When a child process is created,
it is given MODIFY_PRIVILEGE. Since TSS will get control of the child process upon completion of the
kernel call to create the process, MODIFY_PRIVILEGE allows TSS to set the appropriate privileges for the
process.!?

The Process Manager supports event-driven (i.e., interrupt-driven) processes by handling a return from an
interrupt at the pseudo-interrupt level (see Section 4.4.7.1, page 56, for a discussion of the pseudo-interrupt
level). The routine that processes the return from interrupt restores the normal level kernel stack environment
and forces a change to signal level.

4.4.4.2 The IPC Message Manager

The IPC Message Manager provides the interprocess communication mechanism. There are two kernel gate
functions supported in this module, both callable from Ring 2 (untrusted software). They are gate functions
called to send and to receive messages.

An IPC message consists of a message header and text. The message header comprises the ring of the sender
and the unique identifier of the process. The text of the message is supplied by the caller to the kernel gate
or by an internal kernel routine used to send messages to a process from the kernel.

Messages are sent from one process to another by copying them from the sender to a queue of messages
obtained from the global pool. A process’s message is linked on the IPC queue of the APTE for the receiving
process. Ring 2 software is notified of queued messages via a bit in the Ring 2 stack which is set by the
kernel.

During the message receipt operation, an entry is pulled off the IPC queue of the current process and the
message portion is copied into the recipient’s memory. During process deletion, all of the entries on the TPC
queue for the process are pulled off and released.

4.4.4.3 The Kill Process

The Kill Process is one of the kernel processes. It represents an independent thread of control that performs
some of the process deletion functions. During process deletion, the process deletes all of i1ts segments with
the exception of the the Task State Segment (TSKSS), the LDT segment, the PDIR, PDS, the page table
for free pages (from the global pool), and the kernel stack. The Kill Process is then called to finish the job.

12T8S gives away MODIFY_PRIVILEGE for the child at the end of creation processing.

50
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.4. SECURITY KERNEL

The Kill Process also returns the APTE to the global pool. The Kill Process is activated during system
initialization.

4.4.5 Device Management

Device Management is performed by four major kernel modules: the Device Manager, the File System
Manager, the Physical 1/O Layer, and the Interrupt Manager.

4.4.5.1 The Device Manager

The Device Manager handles all kernel calls related to the management of devices. The following device
types are supported by the Device Manager: disk, terminal (including pseudo-terminals), magnetic tape,
printer, and network. The Device Manager performs the following functions: device creation and deletion,
manipulation of device attributes, and management of a process’s device address space. The Device Manager
also contains gates callable only from Ring 1 that are invoked to perform I/O control operations on a device.
Finally, the Device Manager provides the secure terminal lock mechanism, a logically mountable filesystem
function, and a user interface to the system clock.

There are also several kernel gate functions, some that are callable from untrusted software running in Ring
2, supported by the Device Manager. These gate functions include services that perform device status
retrieval, setting and getting device access, and mounting and unmounting of devices. There are also several
gate functions that are callable only from trusted software. These include services that create a device,
retrieve and set the status of a device, lock and unlock a terminal, remove a device, and set the system clock.
Gates that map and unmap devices are callable only from Ring 1. The rest of the functions of the Device
Manager are internal to the kernel.

A device identifier, MAC label, an ACL, a subtype, and a class are associated with each device. Each device
belongs to one of four classes: USER, TRUSTED, TERMINAL, or MOUNTED. TRUSTED class indicates
that a disk partition is not available to untrusted software. A disk is the only device for which the class can
be changed. The class may be changed to MOUNTED, if the partition is to be utilized as a file system via
the mount gate. The partition may be made available to untrusted software via the set_device_class. In
that case, the class is changed to USER. The TRUSTED class is reserved for those devices that cannot be
mapped by untrusted software and cannot support a filesystem until the class is changed by trusted software.

The TERMINAL class is reserved for devices that can be used to log into the system. The system console
always has the TERMINAL class. Serial devices and pseudo-terminals may also be assigned TERMINAL
class. USER class is reserved for all devices that may be used by untrusted software.

For disks that are partitioned into multiple logical filesystems, the system maintains a corresponding logical
device definition. Each partition is treated as a unique logical device that possesses its own set of attributes,
including device identifier, device class, MAC access range, and ACL.

A device identifier consists of a device type, or major number and a minor number. The minor number
is used by the device driver to identify a particular device of a certain type. For disks, the minor number
identifies a partition on the disk.

To create a device, the user must be at administrator integrity and either have write access to the specified
MAC label of the device (i.e., the filesystem “low”) or possess a privilege which overrides the access checks.

51
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

To access USER class devices, the caller must be at the level of the MAC label of the device. The subtype of
the device must be accessible by the caller and the caller must possess the appropriate discretionary access
or otherwise possess privilege to bypass either the subtype or the discretionary access checks.

Each process has a local table containing the devices that are mapped into the process’s address space called
the Known Device Table. This table is managed by the Device Manager and is located in the PDS (see
Section 4.8, page 48). The kernel allows a process to access up to 128 devices within its address space;
however, TSS further restricts the limit to 16 devices per process. Each KDTE contains a link to the Active
Device Table (ADT) that describes all the devices currently in use by the system. The kernel will access a
KDTE from another process if it becomes necessary to remove access to a device in response to a request
by another process to remove access. This is done by a routine that traverses the links associated with the
devices to find those processes that have the device in question mapped into their address spaces.

The Device Manager supports sharing of devices for processes at the same MAC label as the device. In
a manner similar to the management of segments, CLE’s are used to track processes that share the same
device.

Branch information exists on the kernel boot filesystem for each possible device the system may access,
except for pseudo-terminals. The branch information for each device is kept in a Device Branch Table Entry
(DBTE). A device uid is created in similar fashion to the segment uid and is stored in the DBTE. The
device uid is used by the kernel only to locate the device branch information on disk. The device uid is also
stored in the LDD entry for the device.

A DBTE and a SBTE are of the same size, and are managed by the File System Manager which does not
distinguish between them. A DBTE is read into the ADT and becomes part of a Device Table Entry (DTE)
that includes the DBTE, a flag field indicating whether or not the device information has been modified,
and a link to the next DTE. In addition, since the device branch information is kept on disk, each DBTE
must be synchronized, as is the case with each SBTE.

The Device Manager also supports two gates, callable only from Ring 1, to perform I/O operations. The
gate functions call the appropriate device driver to perform the operation specified by TSS.

4.4.5.2 The File System Manager

The File System Manager handles the disk blocks allocated to a particular filesystem. The disk blocks are
one of three types: data, branch, or continuation. The data blocks contain only segment data; the branch
blocks contain an SBTE for each segment defined on the disk or a DBTE for each device defined in the
system. Continuation blocks and the contents of an SBTE are discussed in Section 4.4.3, page 41. The
File System Manager performs allocation and deallocation of data blocks based on kernel requests; it also
performs creation, deletion, and read and write operations on branch information.

None of the File System Manager’s functions are callable outside the TCB. The results of several functions
are visible to a user or trusted software, such as mounting and unmounting of a filesystem, locking of a
filesystem, and deletion of branch information for segments or devices.

Each physical disk is made up of a bootstrap loader, a kernel bootloader, a Filesystem Control Area (FCA),
and the filesystems themselves. Figure 4.10 shows the structure of a physical disk and of a single filesystem.

If the disk is not bootable, the areas containing the bootstrap loader and the kernel loader will be present,

52
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.4. SECURITY KERNEL

Disk Organization

Bootstrap Loader

Operating System Loader

File System Control Area (FCA)

Filesystem 1

Filesystem 2

Filesystem n

Filesystem Organization

Super Page

Branch Blocks

Data/Continuation Blocks

Figure 4.10. Disk and File System Structures

53
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

but empty. The FCA describes how the disk is partitioned into separate filesystems. The FCA contains the
number of filesystems on the disk device and the beginning and ending block of each filesystem.

The filesystems themselves each contain a super page, branch blocks, and data blocks, including continuation
blocks. The super page contains specific information about a filesystem. The super page includes the
filesystem version number, the minimum and maximum MAC labels for the filesystem, a pointer to where
the branch blocks begin, a pointer to where the pool of free data blocks begins, and a mounted indicator
(flag). The super page becomes part of the Mount Table Entry (MTE) for the filesystem when it is mounted.
The Mount Table contains information about all currently mounted filesystems.

The mounted indicator on disk is set when the filesystem is successfully mounted, and cleared when the
filesystem is successfully unmounted. The kernel does not allow a mount of a filesystem in which the
mounted indicator is set. This condition occurs if the system crashes while the filesystems are mounted. The
operator must perform a check and repair procedure on the disk device before it can be mounted again to
restore filesystem integrity (see Section 7.4, page 132, for more details).

4.4.5.3 The Physical I/O Layer

The Physical /O layer of the kernel includes all of the device drivers that perform actual I/O operations
on devices. The Physical I/O layer contains drivers for the following devices: console terminal, floppy disk,
pseudo-terminal, SCS, SCSI disk, SCSI tape, and serial devices (terminals and printers). The Physical I/O
layer also contains interrupt processing functions and support routines used by other kernel managers and
many of its functions are supported by the hardware.

No functions are callable from outside the kernel in the Physical I/O layer. Direct access to I/O ports
and memory-mapped I/O addresses is restricted to the kernel by setting IOPL to zero. As a result, I/O
instructions can only be issued from the kernel.

4.4.5.4 The Interrupt Manager

The Interrupt Manager services all interrupts that occur during system operation. The Interrupt Manager
is also part of the Physical I/O layer. The sources of interrupts include: peripheral devices, real-time clocks
and interval timers upon expiration, keyboards, and non-maskable, or unexpected, interrupts. The Interrupt
Manager is entered only via the hardware.

The main data structure associated with interrupts is the Interrupt Descriptor Table (IDT). The IDT
contains interrupt gate descriptors for each possible interrupt that could occur on the system. The descriptors
provide pointers to the GDT that in turn point to the appropriate TSKSS for the process for which the
interrupt is to be processed. The offset in the interrupt gate descriptor points to the beginning of the
appropriate interrupt handling routine. Each descriptor also contains a DPL field. The DPL is set to zero in
each descriptor. That prevents transfer to the interrupt handler via the descriptor from outside the kernel.
The IDT is indexed by an Interrupt Request (IRQ) number that is determined by the physical location of
the device.

54
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.4. SECURITY KERNEL

4.4.6 Memory Management

Memory Management includes handling of physical memory, implementation of the demand paging algo-
rithm, and allocation of memory to the global pool. Responsibility for the handling of the global pool is
delegated to the Global Pool Manager.

4.4.6.1 The Memory Manager

The Memory Manager is responsible for the assignment of virtual pages of segments to physical memory.
It performs page fault processing and frees up needed physical memory by writing out pages to secondary
storage. The Memory Manager, along with the Segment Manager, maintains the hardware descriptor tables
used in servicing the demand for physical memory. Linear address management is also performed by the
Memory Manager. Linear base addresses are converted from virtual addresses to address segments. The
Memory Manager also calculates segment and page numbers given a linear address. Finally, the Memory
Manager also converts linear addresses to physical addresses. There are no kernel gate functions supported
by the Memory Manager. Its functions are not visible outside the kernel.

The first several memory segments are established during system initialization. Segments 0, 4 and 5 are read
in by the operating system loader. Segment zero contains kernel data and text. Segment four contains the
TSS text. Segment five contains the CASS text. Segment six is used to contain the memory map. Segment
seven contains the global pool. All segments, including those containing kernel data and text, TSS text,
CASS text, and the memory map are paged (i.e., potential candidates for being swapped out).

During the boot operation, each Page Table Entry (PTE) in global memory is initialized to zero. PTEs are
cleared (by software) when a segment is shrunk. The memory pages themselves are cleared only when a page
is referenced which has never been written (i.e., no I/O is required when a new page is referenced). Memory
pages also get overwritten when a previously written page is read in from disk.

The Memory Manager provides the functions for marking pages as memory-resident. This is called wiring
in STOP 4.1. Pages are wired for kernel segments, such as pages of the PDS, and I/O buffers, the TSS text
segment, the CASS text segment, the memory map segment, and the first page of the PLDS. To wire a
page, the memory map entry for the specified page is locked; the count of the number of wire requests is
then incremented in the memory map entry; the wired indicator in the corresponding page table entry is set;
and, finally, the memory map entry is unlocked.

4.4.6.2 The Global Pool Manager

The Global Pool Manager allocates and deallocates blocks of memory from the global pool contained in the
sixth segment of main memory. The global pool is used by the kernel to allocate pages to perform I/O and
to allocate system data structures, such as a page tables, APTEs and ASTEs. Global pool management is
transparent to other rings. There are no kernel gate functions supported by the Global Pool Manager.

During system operation, the Global Pool Manager requests pages of memory from the Memory Manager.
Each page is allocated for a specific type of system table (e.g., an APTE). Each page is subdivided into
sections equal to the size of the table for which the page was allocated. If no free entry for a table type
exists, another page is allocated and subdivided as described previously. If the request for a new page for
the Global Pool Manager cannot be filled, the system shuts down.

55
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

The maximum size of the global pool (1024 pages) is restricted by a system parameter. If request for an
additional page of memory for the global pool causes the maximum size parameter to be exceeded, the
system shuts down. Once a page is acquired by the Global Pool Manager from the Memory Manager, it is
not returned. This is to prevent thrashing between the available global pool and main memory pages.

During system initialization, the Global Pool Manager is called to build a set of tables for each type of buffer
that will be used. The tables contain a type and a size parameter for each kind of buffer.

4.4.7 Scheduling

Scheduling in STOP 4.1 is done by the Scheduler Process and the Scheduler Functions that support the
process. The scheduler process executes within its own address space and is responsible for the dispatching
of processes. The Scheduler Functions provide the interfaces for signal and command processing and process
execution control. The Scheduler Functions, as part of the kernel, execute within the address space of all
processes.

4.4.7.1 Scheduler Process

The main function of the Scheduler Process is to select processes that are ready to run. The Scheduler
Process is activated during system initialization. After the Scheduler Process has been activated, it is
entered only upon the occurrence of a specific set of events. The events include: expiration of timers, device
interrupts, receipt of an IPC message, page of memory becoming available, or unlocking of a segment. A
routine supported by the Scheduler Functions is used by kernel software to cause a process to wait on a
particular event.!3

The system scheduler queue is composed of an APTE for each active process awaiting a processor and is
ordered by priority. If there is no process to schedule, the processor remains allocated to the associated
Scheduler Process until a process becomes ready to run. For processes that are ready to run, a scheduler
locks the queue, picks the first APTE on the queue, unlocks the queue, and dispatches the process.

Processes are scheduled based on priority. The priority is used as a metric to decide how processes are
queued for the scheduler. The interrupt level describes how the process currently executes.

A process can be executing using one of three different TSKSS’s. There is a TSKSS for three states: normal,
signal, and pseudo-interrupt (kernel processes have only the normal TSKSS). The signal TSKSS is used if
there are delete or kill signals pending, or there are commands (e.g., subtype change or terminal event) or
messages to handle. The pseudo-interrupt TSKSS is used if there are interrupts that need to be serviced.
The normal TSKSS is used for all other states while the process is actually running (i.e., not waiting for any
system resource or I/0).

Transitions between the TSKSS’s of different processes occur only in going to and from the Scheduler Process.
An INT or IRET instruction causes a transition to another TSKSS. The Scheduler Process is always entered
upon execution of the INT instruction and is always left via an IRET.

Command processing is actually handled by the Scheduler Functions. Commands are linked in a list off the

13The suspend_execution gate supported by the Process Manager is used to by the TCB to cause processes to wait on events.

56
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.4. SECURITY KERNEL

APTE. Each command is processed by calling the appropriate routine to handle the command type. All
commands are processed before the process regains control.

4.4.7.2 Scheduler Functions

The Scheduler Functions contain those routines which execute within the process address space that per-
form operations related to scheduling. The Scheduler Functions provide the signal, command, preemption
processing interface, and process execution control interface. There are no gates supported by the Scheduler
Functions.

4.4.8 Support Modules

There are a number of miscellaneous modules that support the function of the kernel and other kernel gate
functions. They are described below.

4.4.8.1 The Trap Manager

The Trap Manager handles all operational traps. The Trap Manager can correct the condition that caused
the trap or fault, and resume execution of the process involved, or pass off the trap, to the appropriate
handler. If a hardware or software failure occurs within the kernel, the Trap Manager will cause the system
to shut down. There are no gate functions supported by the Trap Manager.

For the majority of user traps, the associated data is reflected to the process through the TSS trap interface
for processing. For page faults, the Trap Manager will cause the Memory Manager to be activated to bring
in the missing page. A page fault is invisible to a process.

Traps are pushed onto the kernel stack. The trap context is placed into a kernel stack frame. The trap
procedure is treated as a CALL and executes in the kernel. When the trap processing is complete, the process
will resume execution at the location and in the ring of execution specified by the values in the kernel stack
frame. If the trap occurred outside the kernel, or further processing in TSS is required, the system resumes
execution in TSS by copying the address of the ring 1 trap handler into the stack frame by which the kernel
was entered.

In general, whenever a trap or fault occurs while they are being processed, the system will shut down. There
are conditions, however, in which recovery from such conditions is possible (as in the case of page faults).

4.4.8.2 The Audit Process

The Audit Process and the Audit Functions together provide the capability to generate a record of security-
related events (the entire audit mechanism is explained in Section 6.6, page 120). The Audit Process serves
as the kernel interface to the File System Daemon Process running in the TSS Domain (see Section 4.6.4.2,
page 66, for more details). Audit information is passed to the Audit Process from the Audit Functions
module. The Audit Process outputs the information into segments on the filesystem from which the system
was booted. The names of the audit segments are passed to the File System Daemon Process for audit files
to be produced. The Audit Process is activated during system initialization.

57
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

4.4.8.3 Audit Functions

The Audit Functions manage the audit queue and service all kernel requests to generate audit information.
The Audit Functions support kernel gate functions, callable from trusted software, to perform auditing of
events and to change the audit segment. The audit queue is a linked list of audit frames that contain the
link to the next frame, the number of bytes in the frame, the audit data, and a new segment flag. After
an audit frame has been filled and placed on the tail of the queue, the Audit Process is awakened to copy
the data to the current audit segment. When the copy operation is done, the audit frame is returned to the
global pool. Each frame is one page in length. There is a limit of nine audit frames on the queue. When the
limit is reached, the audit semaphore is set to prevent additional processes from entering the kernel.

The Audit Functions keep track of the length of the audit segment on disk. If it has been determined that the
audit segment is full, a new segment flag is set within the first data frame to be copied to the new segment.
The Audit Process checks this flag and if it is set, unmaps the current segment and creates a new audit
segment. The name of the new segment is sent via an IPC message to the File System Daemon Process.

4.4.8.4 Metering Management

The Meter Manager provides support for collecting and reporting system performance information. The
Meter Manager provides one kernel gate used to report the information that has been collected to a process
running at operator or administrator integrity level. The gate can also be called to enable certain types of
data to be collected. In the evaluated system, metering is not enabled.

The types of data collected include: floppy and SCSI disk I/O times, kernel and TSS execution times,
scheduling process execution times, and other I/O data from the File System Manager, the Memory Manager,
and the Segment Manager (e.g., branch block reads and writes). Metering is used for system tuning purposes
and also as an aid to calculating covert channel capacities.

4.4.8.5 The Programmable Interval Timer (PIT) Manager

The PIT Manager provides the interface for obtaining the current value of the timer. The information
returned is used as a pseudo-random number for uid generation. The PIT Manager contains a routine to
return the time in seconds since 1970. The PIT Manager also services timer interrupts.

4.4.8.6 The Real Time Clock (RTC) Manager

The RTC Manager manages the real time clock. The RTC Manager provides all timer-related services for
use by other kernel modules including event handling and covert channel capacity reduction.

The RTC is used by processes to cause an event to happen after a specified period of time. Processes can
be awakened or can receive an TPC message for an alarm when the timer expires (established through the
execution of a kernel gate). Processes can be suspended, to be awakened later by a user request or by the
kernel, if it is determined that a delay is necessary to reduce covert channel capacity. A user request to
suspend is performed via a kernel gate which is callable from untrusted software running in Ring 2.

The queue of timer entries is a linked list ordered by the time in which the entries will expire. The first

58
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.4. SECURITY KERNEL

entry contains the time remaining for the first entry. Each entry following the first contains an increment
from the immediately preceding entry. The increment indicates the remaining expiration time relative to
the preceding entry. The main purpose of this mechanism is to avoid updating every timer entry upon each
clock tick.

4.4.8.7 The Connection List Manager

The Connection List Manager provides functions for managing segment and device sharing. The Connection
List Manager controls the addition and deletion of CLE’s. There are no kernel gates supported by the
Connection List Manager.

The connection list is examined by kernel modules to locate process information for a particular segment or
device. Terminal type (e.g., console, serial, and pseudo-terminal) device drivers use the connection list to
manage lists of processes waiting for a particular event to occur on the device.

4.4.8.8 Service Functions

The Service Functions module contains the utility functions common to the other kernel modules; there
are no gate functions supported by the Service Functions. The Service Functions include the routines that
perform the following operations: check (both MAC and DAC) to determine the caller’s ability to access an
object in the specified mode, manipulation of semaphores and locks, enabling and disabling of interrupts, and
the copying of a data block between an outer and inner ring which includes the validation of a caller-supplied
outer ring pointer.

4.4.8.9 Shutdown

Shutdown is the operation by which the system is halted and left in a state such that the system startup
process can safely resume operations. The operator can initiate the Shutdown process via Trusted Software,
or system shutdown may be invoked by a hardware or software failure encountered in TCB processing. The
shutdown kernel gate function is callable only from trusted software.

During shutdown processing, all the attached terminals are disabled. All non-kernel processes, with the
exception of Shutdown itself, are suspended. The operator is prompted as to whether or not a dump tape
is to be made. Delete signals are sent to user processes. User processes that are blocked are awakened to
perform local termination functions. After the user processes have terminated, the devices and segments
allocated to Shutdown are returned to the system. Audit collection is terminated and any existing audit
frames are written to the audit segment. The File System Daemon Process is deleted after it has completed
any audit segment create operations. Modified data pages, segment branch, and device branch entries are
synchronized to disk. Finally, each mounted filesystem is unmounted.

While an orderly shutdown is in progress, all locks held by other processes are honored. That is, the integrity
of the filesystem will be held, if possible. However, other internal conditions could result in an immediate
system shutdown. Conditions that may cause a “hard” shutdown include an unrecoverable 1/O error, an
attempt to halt a process that holds a spin lock (the process is in the attempt to update a locked resource
while shutdown occurs), a call to shut down the system from a kernel process, a second attempt to halt the
system from the process that originally issued the shutdown call, and the original calling process executing

59
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

at signal level, that indicates the process is trying to delete itself and is unable to do so, or that it will never
get to the delete signal to clear its segments from the system.

If an error occurs during shutdown processing, the system is halted and no dump is taken. The mounted
filesystems are then left in an unknown state. A check and repair utility must be run on the disks before
they can be mounted again. For more details concerning system recovery, see Section 7.4, page 132.

4.5 System Initialization

System initialization is performed in two phases. The first is performed by the system loader and the kernel
startup process; the second is performed by the Secure Startup process in Trusted Software (see Section
4.7.1.1, page 67, for more details).

The system loader, which comprises the bootstrap loader and the operating system loader, is the first process
to run. The system loader and the system code and data are all read in from the boot device. The bootstrap
loader runs in physical address mode. The bootstrap loader sets up a virtual environment and loads the
operating system loader into memory. The virtual environment is enabled by the bootstrap loader just
before transferring control to the operating system loader. The operating system loader first reads the
kernel data into low memory. Then kernel data and text, TSS text, and CASS text are loaded. Following
that, the operating system loader initializes kernel variables. Thus, a virtual environment is created for the
Scheduler Process which is then activated. The scheduler process completes the kernel portion of the startup
by completing initialization of scheduler data then calling a kernel startup routine that causes the rest of
the kernel initialization to be performed, including the activation of kernel processes.

The kernel startup routine begins by clearing the memory occupied by the operating system loader. Several
of the operations performed during initialization are listed below. The Memory Manager is called to partition
physical memory into the memory map, the global pool, and the rest of the memory pages to be managed.
The kernel startup routine calls the Device Manager to initialize the device drivers. The Audit Functions are
called to initialize the audit information. The Secure Startup process is created. The kernel processes are
activated. The processes activated are: the Audit Process, the Kill Process, and the System Sync Process
Every process with the exception of the Scheduler Process has its APTE linked to the scheduler queue to be
activated once a processor is available. System initialization then continues once the Secure Startup process

1s scheduled.

4.6 TCB System Services (TSS)

The TCB System Services occupy the TSS Domain (Ring 1). In contrast to the kernel, all TSS data
structures are maintained in process-local memory. The primary functions of TSS are to create and load
both trusted and untrusted programs, to provide I/O services to Ring 2 software, and to convert the flat
kernel file system consisting of segments into a hierarchical file system consisting of files and directories. The
only access control enforcement provided by TSS is discretionary access control to file system objects and
segments. TSS is organized into several layers, with functions in the upper layers relying on those in the
lower layers. A diagram of the layered organization of TSS is shown in Figure 4.11. With the exception
of the File System (FS) Daemon, which is an independent process, TSS executes as part of a trusted or
untrusted process.

60
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.6. TCB SYSTEM SERVICES (TSS)

Highest Layer

Gate Manager | Interrup Manager | Kill Manager | Trap Manager

Entry
Program Loader
| Process Mgr. Process Manager |
FSDaemon File System Dagmon |
i i File System File System
File System File System File System 3% 3%
Attributes 1/0 Pathname Structure
Segment Mgr. Segment Manager
1/0 Mgr. I/O Manager
Device Driver Disk Driver | SCS Driver Log I/O Driver | Tape Driver | Termio Driver
FSServices File System Services |
I/O Services /O Services |
Service Service Functons |
Lowest Layer

Figure 4.11. TCB System Services Layering Diagram

61
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

4.6.1 Process Management

Processes are handled by two layers of TSS: Process Manager and Entry (which include both the Program
Loader and Kill Manager).

The Process Manager services the TSS calls relating to process management for both trusted and untrusted
0SS domain programs. It provides calls to create other processes, to load programs, and to manage the user
and group identifiers of a process. Processes may be created with either the load _process or fork_process
TSS gates. The load _process gate allows an unprivileged process (the parent) to create a new process (the
child) whose MAC label dominates its own MAC label, subject to the constraint that the user’s clearance
level is not exceeded. Trusted programs, which have a minimum integrity level of Operator, may not be
invoked from outside the TCB. This gate checks that the caller has permission to invoke the program and
that it is an executable file. It then determines the size requirements (memory and devices) and uses the
kernel gate create process to actually create the new process. On completion of process creation by the
kernel, process execution continues with the Program Loader.

The fork_process gate creates a new process with characteristics and environment identical to that of the
requesting parent process, with the exception that active device I/O requests are not duplicated in the child
process. The gate returns to the same execution point in both the parent and child process, distinguishing
between them by means of the returned process identifier. This gate is similar in operation to the UNIX
fork system call.

The overlay_text gate overlays a program text segment with a new one. The gate unmaps the old text
segment and maps the new text segment in its place. If the file header for the new text segment indicates
that the program is a set user ID (set group ID) program,'* the gate will save the current process owner
(group), and the effective owner (group) will be set to that of the program text segment. It also updates the
real and effective owner and group IDs in the OSS stack so that programs executing in the OSS domain can
access them. Note that there is no call equivalent to the UNIX “setuid root” call. Also, the mechanism for
changing the effective owner or group of a process is not used by the TCB. This gate is similar in operation
to the UNIX ezecve system call, and, like it, does not affect a process’s open devices or files.

The set_user_group gate sets the real and effective user/group identifiers for the current process. The
semantics of UNIX are maintained by this gate. That is, a new effective user (or group) ID will be set only
if it equals the current real user (or group) ID or the one saved by the overlay_text gate.

4.6.1.1 Program Loader

The Program Loader is used to load all trusted and untrusted programs and to establish their maximum
privilege sets. It is invoked by the kernel to load and initialize processes outside the kernel and TSS domains.
The kernel does this by mapping the file control segment of the file to be loaded at a specified place, mapping
one segment as the OSS stack, and causing execution to begin at the Program Loader entry point. Unless
the program file is at Operator integrity or greater, the privilege set is made null; otherwise, it is set to
the privilege set found in the program file header. If the program is to be run set user ID (or set group
ID), TSS saves the current values in the PLDS and sets the new owner (or group) ID. It then initializes the
environment for the program and begins its execution.

14 The TCB does not use the set user ID (set group ID) mechanism, but provides it for UNIX compatibility. For a discussion
of additional protection provided by XT'S-300 on the use of this mechanism, see Section 6.5, page 120.

62
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.6. TCB SYSTEM SERVICES (TSS)

4.6.1.2 Kill Manager

The kill handler is notified of all soft kill requests by the kernel. It initiates all necessary TSS cleanup for
the process, and notifies the OSS domain of the kill request if that domain has defined a kill handler. To
transfer control to the OSS domain, i1t builds a call frame to place the OSS domain’s kill handler address
into the return location so that when the TSS kill handler exits, the OSS kill handler will be invoked.

4.6.2 File System

The file system is supported by three layers: FS Daemon, File System, and FS Services. The file system
provides the fundamental services needed to support a UNIX-based file system for the OSS domain. TSS
filesystems are supported only on mounted or trusted-class, not user-class, devices. TSS provides a hierar-
chical file system structure consisting of directories, files, named pipes, and device special files. Although
it provides no mandatory access control enforcement!®, it does provide discretionary access control for file
system entities using the conventional owner/group/other permissions, augmented by an access control list.
This section first describes the file system structure, and then describes each of the layers.

4.6.3 File System Structure

The file system provides for permanent storage of user data. It provides interfaces and operations that are
closely related to those provided by UNIX. For example, it supports the directories /tmp, /spool and
/usr/tmp using a deflection mechanism. It also supports the immediate effect of changes in discretionary
access on an object for all users except the owner. For the owner of the object, the check is made at the
next open call in order to support a common idiomatic use in UNIX of this behavior.

Each directory, named pipe and device special file is represented by a single segment; each type of segment is
assigned to a distinct partition (in the segment uid field). These segments (other than the directory segment)
are called control segments. Files consist of a file control segment, and may have additional segments if their
size requires it. File control segments and file additional data segments use distinct partitions in their uid
fields. Figure 4.12 depicts the segments used in the file system. All directory, First-in First-out (FIFO, also
known as “pipes”), and device special file segments in the file system have a DPL of 1, as do file control
and data segments.!® Each control and directory segment contains a file system header, which includes
various times (creation, last-access, last-modification, and last-attribute-change), and a list of one or more
uids of directories pointing to that object; directories are permitted only a single such backward link.'”
The directory segment contains a deflection flag and an array of entries containing names paired with a file
system identifier and uid (the XTS-300 equivalent of the UNIX inode). For device special files, the control
segment contains a flag indicating whether the device is a character or block device, and the major/minor
number. For named pipes, the control segment contains flags and pointers to control reading and writing,
and the pipe data itself. For ordinary files, the file control segment contains the file size, the privileges
and minimum integrity (applicable for files that are executed as programs), pointers to any additional data
segments needed to contain the file, and, finally, the data for the first (perhaps, only) portion of the file.

15MAC policy enforcement is provided by the kernel.

16 TSS copies all file segments to temporary segments on which the appropriate permissions are set to allow execution in outer
rings.

1"Whereas a file may appear in several locations in a directory structure (i.e., a file may have multiple links), a directory can
appear only once.

63
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

\ Directory Segment

Name

Segment UID
FS ID

FINAL: July 11, 1995

FS Header

Directory
Entries

Device Control Segment

FS Header
Char/Block

Major/Minor #

FIFO Segment

FS Header
FIFO Control

FIFO Data Buffer

File Control Segment

FS Header

File Size

Additional
Data Segments

File Data Segment

Additional
File Data

ﬁ

File Data Segment

File Data

Directory Segment

FS Header

Directory
Entries

Figure 4.12. Overview of the STOP File System

Additional
File Data

Final Evaluation Report Wang XTS-300
4.6. TCB SYSTEM SERVICES (TSS)

To support the UNIX notion of a directory writable by any process, XTS-300 uses deflection directories.
These are directories that are specially marked by the vendor at the time the system is generated; they
cannot be so designated at a site. They provide multiple subdirectories, each with a different MAC label.
When a user process encounters one of these deflection directories during pathname evaluation, the process’s
MAC label is used to construct a subdirectory name which is silently (i.e., unobserved by the process)
appended to the directory name. If such a directory does not already exist, it is created before pathname
evaluation continues. The process uses the subdirectory as if it were the original deflection directory; it is
able to create files or subdirectories within it as desired. Only a process at Administrator integrity or higher
is able to access any of the subdirectories (within MAC limits) within a deflection directory.

4.6.4 File System Layers
4.6.4.1 File System

The File System layer contains several managers that support the TSS file system gates.

e The File System Attributes Manager handles those gates that obtain or modify attributes of a file
(e.g., MAC label, access control list, privileges associated with a program file, and date/time of last
modification).

e The File System Pathname Manager handles those gates that obtain or modify the current working
directory; this manager also supports the privileged gate permitting a process to set its current deflec-
tion level as desired, or to inhibit the deflection mechanism so that it can view the otherwise hidden
subdirectories of a deflection directory.

e The File System I/O Manager handles those gates that support basic input and output of file system
objects. This manager maps the control segment for an open file into the process’s address space
reserved for this purpose. All gates in this manager work with a file descriptor (fd) which is the
relative segment number of the control segment. The file control segment is always mapped for both
read and write by TSS (if it can), regardless of the access mode requested by the caller. Because the
DPL of these control segments has a value of 1, only TSS can modify them. If TSS can map'® the
control segment only for read, then fields in the control segment (such as date/time of last access) will
not be modified. In the open_fs gate, discretionary access checking is performed by TSS. Because TSS
and not the kernel knows the relationship between segments and files, only TSS is able to make this
check. It uses the kernel-maintained access information to make the check.

e The File System Structure Manager handles gates that create and destroy file system objects, and
those that maintain the hierarchical structure.

e The File System Services Manager contains lower level (library) routines that support the File System
Manager.'®

18 This strategy has the awkward side effect of producing MAC policy violation audit records that are misleading: they result
not from a user process’s attempt to initiate an illegal access, but from TSS itself.

19 Although shown in the layering diagram, Figure 4.11 (page 61), as a separate layer, this manager is used only by the File
System Manager and higher layers, and is included with that manager in this discussion.

65
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

4.6.4.2 File System Daemon

The File System Daemon, the only TSS Domain process in XTS-300, is started during system initializa-
tion. This daemon provides a controlled mechanism for the execution of actions that require privilege (e.g.,
SET_-OWNER_GROUP or one of the privileges permitting exemption from policy controls on writing). It
runs with the maximum sensitivity label and the minimum integrity label (System High) so that any process
in the system can send it a message. The daemon does not acknowledge any messages; it is the sender’s
responsibility to determine (by repeated testing, if necessary) that the daemon’s action has been taken. It
processes messages of four types.

e The kernel sends the daemon an audit file creation message whenever a new audit file is created by
the kernel. The daemon places the audit file into the /audit directory, and then notifies the Console
Server.

e The kernel sends the daemon a soft delete message when the last process that had a control segment
mapped unmaps it, and the file system object represented by that control segment was marked for
deletion earlier. The daemon deletes the segments associated with the control segment, and then the
control segment itself.

e TSS sends the daemon a “deflect create” message when, during pathname interpretation, it encounters
a deflection directory that does not contain a subdirectory with the appropriate encoded MAC label.
The daemon creates the subdirectory.

e TSS sends the daemon a “remove link” message when it is asked to unlink an object (such as a file with
a MAC label that strictly dominates that of the containing directory) for which the process does not
have access at its current level. The daemon removes the link and adjusts the link count, and deletes
the object if the link count has reached zero.

4.6.5 Segment Manager

The Segment Manager, which occupies a layer of its own, manages the only segments visible at the TCB
interface, namely, temporary segments. It supports TSS gates for the creation of private and shared segments,
for their mapping, for modifying their size, and for setting and releasing shared segment locks. Because the
kernel does not check discretionary access for segments, this manager does all discretionary access checking.
Temporary private segments are always mapped for read and write, and no provision is made for changing
the access of such a segment because it can be mapped only by the creating process. Temporary shared
segments are mapped for both read and write. Except for the discretionary access checking it does, this
manager consists essentially of direct translation into kernel gate calls.

4.6.6 Input/Output

All device input and output is managed by TSS, except for that required to support the kernel’s segments.
TSS provides callable functions to open and close user devices, and to perform both data transfer and control
operations on user devices. TSS also verifies that the device number to which I/O is to be performed is valid.

The support for I/O occurs in several layers in TSS: Entry (Interrupt Manager), I/O Manager, Device
Driver, and I/O Services. The I/O Manager handles all TSS gates relating to the management of user

66
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

devices. It processes user device interrupts and manages I/O buffers. It converts its requests into calls to
the appropriate specific device driver; each of these drivers can support the operations on a single device
type. The device drivers in turn call the kernel to perform the specified physical 1/O operation.

4.7 Trusted Software

Trusted Software executes in the OSS domain; it is invoked by the TSS software or by the user. The user
invokes the software by using the SAK, which is implemented as <BREAK> on the keyboard. If the terminal
is not currently logged in, the TCB requests the user to login. If the terminal is logged in, the TCB queries
the user for a command to execute. Currently executing untrusted software in the OSS and the user domains
no longer has access to the terminal; neither does currently executing trusted software in the OSS domain.
Trusted software is written to abort upon detection of the terminal loss. If a trusted command was being
executed, it is terminated prior to the server prompt.

When the SAK is detected by the serial controller, the line is disabled from further I/O. The enabling of the
line requires a privileged operation and is carried out by the Secure Server.

4.7.1 Trusted Processes

Table 4.1 provides a list of the trusted processes, their MAC labels and their privileges. For the description
of the privileges, see Section 6.3.4, page 116. A trusted process that runs with operator or higher integrity
and/or has privileges. The process’s owner and group are “system” and “system,” respectively, except for
the Secure Server and the Printer Daemon whose owner is the user.

The following trusted processes execute in the OSS domain: Secure Startup, Secure Initiator, Secure Server,
Console Server (which is the Secure Server for the Console), Message Daemon, and Printer Daemon. The
executable images (program files) for the processes reside in the /system directory. The directory and the
program files are protected from unauthorized modifications through the use of the maximum integrity label.
The sensitivity labels on the directory and the program files are “minimum.” The ACLs on the directory
and the program files allow read, write, and execute (search) permissions to the owner, group, and world.
The directory and the program files are owned by the user “system” and the group “system,” respectively.

4.7.1.1 Secure Startup

The kernel loads the Secure Startup program after completing the kernel startup processing. The Secure
Startup program performs the following functions in chronological order:

1. Creates the TSS File System Daemon process
2. Creates the Secure Initiator process
3. Creates the Secure Server for the Console (also called the Console Server)

4. Creates the Message Daemon Process

67
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

Table 4.1. Trusted Processes

Process Name

Sens.

Label

Integ.
Label

Privileges

Secure Startup

Max.

Max.

SET_OWNER_.GROUP

SET_LEVEL
DISCRETIONARY_ACCESS_EXEMPT
SIMPLE_INTEGRITY_EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT

Secure Initiator

Max.

Max.

None

Secure Server

Max.

Max.

DEVICE_.CONTROL_EXEMPT
SET_LEVEL
SET_PROCESS_ATTRIBUTES
SET_SUBTYPE_ACCESS
SET_OWNER_.GROUP
SIMPLE_INTEGRITY_EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT
TERMINAL_LOCK
DISCRETIONARY_ACCESS_.EXEMPT

Console Server

Max.

Max.

Same as Secure Server

Message Daemon

Max.

Min.

SECURITY_STAR_PROPERTY_EXEMPT
INTEGRITY_STAR_PROPERTY_EXEMPT
DISCRETIONARY_ACCESS_.EXEMPT

Printer Daemon

Max.

Max.

SET_OWNER_GROUP
SIMPLE_INTEGRITY_EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT
DISCRETIONARY_ACCESS_.EXEMPT

FINAL: July 11, 1995

68

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

5. Calls the kernel to create the device if the Logical Device Data segment indicates that a device was
not created in the kernel sense (i.e., no branch block)

Ensures that the level of the device is within the range specified in the Logical Device Data segment
Checks all configured terminals and marks them logged out

Sets the “startup” flag in the Trusted Information database to false (see Section 4.7.3.2.16, page 87)

© oo 0~ O

Terminates itself after notifying the Console Server and the Message Daemon that the system startup
is completed.

The Secure Startup process executes at the maximum MAC label. It has the following privileges:

SET_-OWNER_GROUP to set all terminals to logged-out state
SET_LEVEL to set the access level of a device
DISCRETIONARY_ACCESS_EXEMPT to map a device
SIMPLE_INTEGRITY_EXEMPT to map a device of low integrity

SECURITY_STAR_PROPERTY_EXEMPT to map a device of low sensitivity.

4.7.1.2 Secure Initiator

The Secure Initiator is responsible for creating the Secure Server processes as necessary and for managing
the pool of free Secure Server processes. It receives a message from the kernel whenever the SAK is struck at
a terminal that is not mapped by a process that has the TERMINAL_LOCK privilege (e.g., Secure Server).
If the key is from the Console, the Secure Initiator sends the message to the Console Server. The Secure
Initiator assigns a Secure Server process from the free pool, and forwards the SAK to it. If the Secure Server
free pool is empty, a new Secure Server is created. The Secure Initiator also does the same processing for a
“hangup” message received from the kernel.

After the processing is completed by a Secure Server, it notifies the Secure Initiator. If the free pool of
servers is not full, the Secure Initiator adds the Server to the free pool; otherwise, it asks the Server to kill
itself. The Secure Initiator executes at the maximum MAC label and has no privileges.

4.7.1.3 Secure Server

The Secure Server processes the SAK by either requesting a login or a trusted command after enabling the
terminal line. If the terminal is not logged in, the Secure Server invokes the login function. If the terminal
is logged in and is performing untrusted processing, the Secure Server displays the current MAC label and
the process family identifier, and maps the terminal to itself. If another trusted process is active, the process
terminates itself upon detecting the loss of the terminal.

The Secure Server then prompts the user and reads the user command. If the command is not in the trusted
commands list, if the user’s current integrity label is below that required, or if the user does not possess the
capability to execute the command, an appropriate error message is displayed.

69
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

The Secure Server also responds to the hangup condition sent to it either by the kernel through the Secure
Initiator or directly. When a hangup signal is received, the Secure Server executes the logout command for
the terminal.

After processing a command, the Secure Server suspends itself until it receives another SAK or “hangup”
message from the TSS, except for the logout, reattach, run, and the trusted commands for which the Secure
Server spawns programs. In these cases, the Secure Server releases the terminal and notifies the Secure
Initiator to put the Secure Server on the free pool.

The Secure Server executes at the maximum MAC label. It has the following privileges:

DEVICE_.CONTROL_EXEMPT to set the terminal default attributes

SET_LEVEL to set the MAC label of the user terminal

SET_PROCESS_ATTRIBUTES to change the MAC label and the family ID of a pro-
cess

SET_SUBTYPE_ACCESS to grant and revoke terminal access to the untrusted
processes

SET_-OWNER_GROUP to change the owner and group of the terminal and of
the Secure Server

SIMPLE_INTEGRITY_EXEMPT to open the terminal at a lower integrity label

SECURITY_STAR_PROPERTY_EXEMPT to open the terminal at a lower sensitivity label

TERMINAL_LOCK to open and unlock a locked terminal

DISCRETIONARY_ACCESS_EXEMPT to bypass file subtype checking for trusted databases.

4.7.1.4 Console Server

The Console Server is the system console’s Secure Server. It is created by the previously described Secure
Startup process, and is always active after creation. It sends the “system ready” message to the Message
Daemon after the operator issues the startup command on the system console. The Console Server also
formats and displays the console messages received from the kernel, the TSS, and the Trusted Software. For
the MAC label and privileges of the Console Server, see the description of the Secure Server.

4.7.1.5 Message Daemon

The Message Daemon processes the IPC message requests for various trusted software, including the “device
error” and the “mount” messages for the Console Server. Untrusted processes in the OSS domain can issue
print requests to the Message Daemon through the send message kernel gate. The Message Daemon also
schedules printing requests by initiating the Printer Daemons and by sending the daemons the IPC messages
after the startup command has been issued. It also manipulates the print queue.

The Message Daemon executes at the maximum sensitivity and minimum integrity label. It is the only
trusted process that runs at other than the maximum MAC label. The Message Daemon runs at minimum
integrity label to receive IPC messages from any process. It has the following privileges:

70
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

SECURITY_STAR_PROPERTY_EXEMPT to send acknowledgments to lower sensitivity pro-

cesses.

INTEGRITY_.STAR_.PROPERTY_EXEMPT to send acknowledgments and messages to higher in-
tegrity processes, to initiate higher integrity Printer
Daemon processes, and to communicate with the
higher integrity Printer Daemon and Console Server
processes.

DISCRETIONARY_ACCESS_EXEMPT to bypass the checking of file subtypes for trusted

databases.

4.7.1.6 Printer Daemon

The Printer Daemon processes all the print requests for a system printer. There is one Printer Daemon
process for each of the system printers.

Each process runs at the maximum MAC label. The Printer Daemon process uses the following privileges:

SET_-OWNER_GROUP to change the owner and group of the Print Daemon
to that of the print requestor

SECURITY_STAR_PROPERTY_EXEMPT to delete lower sensitivity spool files and to map lower
sensitivity printers

SIMPLE_INTEGRITY_EXEMPT to read lower integrity spool files, to map lower in-
tegrity printers, and to receive messages from thelower
integrity Message Daemon

DISCRETIONARY_ACCESS_EXEMPT to bypass file subtype checking for trusted databases.

4.7.2 Trusted Databases

This section describes the trusted databases that are manipulated and used by the Trusted Software. Each
database resides as a separate file in the /etc directory, except where noted. The /etc directory is at the
minimum sensitivity and maximum integrity MAC label. Tts ACL allows read, write and execute(search)
permissions to the owner, group, and world. The /etc directory’s owner and group are “system” (user ID
0) and “system” (group ID 0) respectively.

The trusted databases (files) are protected from unauthorized modifications through the assignment of the
maximum integrity label. The files are owned by the user “system” and group “system.” The ACLs for the
files allow read and write permissions to the owner, group, and world; it allows execute permission to no
one. Some of the files are further protected using subtypes.

The following databases are described in this section:
e Databases used in identification and authentication (User Access Authentication, Group Access Au-

thentication, User Access Information, Group Access Information, Session Control, and Terminal
Configuration)

71
FINAL: July 11, 1995

Final Evaluation Report Wang X'T'S-300

CHAPTER 4. SOFTWARE OVERVIEW
e Security Map database, used for the MAC labels
e Databases used for handling print requests (Printer Information and Print Request Queue)
e Trusted Information and Audit Information

e Trusted Program Directory (This database is the only trusted database that is not a file; it is a
directory.)

e Daemon Attribute database
e Hardware configuration databases (Kernel Configuration, Logical Device Data (LDD), Secure Com-

munications Subsystem (SCS)).

Each database description in this section includes file name, MAC label, number of records, important fields
for each record, trusted command used to modify the database, and restrictions, if any. Table 4.2 provides
a list of the trusted databases and their sensitivity and integrity labels.

Table 4.2. Trusted Databases

Database Name Sens. | Integ. | Subtype
Label | Label | Protect
User Access Authentication Max. | Max. | Yes
Group Access Authentication | Max. | Max. | Yes
User Access Information Min. | Max. | No
Group Access Information Min. | Max. | No
Session Control Max. | Max. | Yes
Terminal Configuration Min. | Max. | No
Security Map Min. | Max. | No
Printer Information Min. | Max. | No
Print Request Queue Max. | Max. | Yes
Trusted Information Min. | Max. | No
Audit Information Min. | Max. | Yes
Trusted Program Directory Min. | Max. | No
Configuration Min. | Max. | No
Logical Device Data Min. | Max. | No
Daemon Attribute Min. | Max. | No
Secure Comms Subsystem Min. | Max. | No

4.7.2.1 User Access Authentication Database

The User Access Authentication database resides in the file /etc/user_auth; the file is at the maximum
MAC label. There is one record for each user containing the one-way encrypted user password (using the
Data Encryption Standard (DES) algorithm), default group ID, maximum MAC label for the user, default
MAC label for login, last login time and device, number of failed logins since the last login, and the last time
the password was set. The record also contains the capability set for the user. Capabilities are discussed in

72
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

Section 6.3.3, page 115. The command ua_edit is used to edit this database. The file is assigned a unique
file subtype to protect it from access by untrusted software.

4.7.2.2 Group Access Authentication Database

The Group Access Authentication database resides in the file /etc/group_auth; the file is at the maximum
MAC label. There is one record for each group containing the list of user IDs. The command ga_edit is
used to edit this database. The file is assigned a unique file subtype to protect it from access by untrusted
software.

4.7.2.3 User Access Information Database

The User Access Information database resides in the file /etc/user_info; the file is at the minimum sen-
sitivity and maximum integrity label. There is one record for each user containing the user name, the user
home directory, and the user command processor. The command ua_edit is used to edit this database. The
file initially contains three users: “admin” (user ID 1), “oper” (user ID 2), and “user” (user ID 3).2°

4.7.2.4 Group Access Information Database

The Group Access Information database resides in the file /etc/group_info; the file is at the minimum
sensitivity and maximum integrity label. There is one record for each group ID containing the group name.
The command ga_edit is used to edit this database.

The file initially contains two groups: “STOP” (group ID 1) and “mail” (group ID 2). The “STOP” group
has the following users in it: “admin,” “oper,” and “user.” The “mail” group has no users in it.

4.7.2.5 Session Control Database

The Session Control database resides in the file /etc/session; the file is at the maximum MAC label. There
is one record for each terminal in the system containing the number of failed login attempts since the last
successful login, terminal lockout flag, time when terminal lockout occurred, current process family, process
ID of the detached process (if any), and MAC labels of each active process family. This database is updated
dynamically by the TCB. The file is protected from access by untrusted software using a unique file subtype.

4.7.2.6 Terminal Configuration Database

The Terminal Configuration database resides in the file /etc/term_config; the file is at the minimum
sensitivity and maximum integrity label. There is one record for each terminal in the system. Each record
contains the device type (major) and minor number, baud rate, parity flag, data flag, terminal login retry
count, terminal lockout duration, terminal automatic logout timeout, page length, and terminal type. The
command config_edit is used to edit this database.

20The user ID 0 and group ID 0 are for the user name “system” and the group name “system,” respectively. There is no
record for these names and IDs in the trusted databases. These IDs are interpreted by the TCB.

73
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

4.7.2.7 Security Map Database

The Security Map database resides in the file /etc/security map; the file is at the minimum sensitivity and
maximum integrity label. It contains the input and output character strings for each of the 16 sensitivity
levels, the 64 sensitivity categories, the 8 integrity levels, and the 16 integrity categories. The command
sm_edit is used to edit this database.

The file 1s at the minimum sensitivity and maximum integrity label, which allows any user to read the labels.

4.7.2.8 Printer Information Database

The Printer Information database resides in the file /etc/printer_info; there is one record for each system
printer containing the device type (major) and minor number, the printer class, printer type (e.g., basic
line printer), page size, and line width. All system printers with the same class number (between 0 and the
maximum of 65535) effectively share a common input queue. The command config_edit is used to edit this
database.

4.7.2.9 Print Request Queue Database

The Print Request Queue database resides in the file /etc/prq; the file is at the maximum MAC label.
There is one record for each active and waiting print request containing the entry ID, file name, user name,
and the MAC label of the requesting process, print markings flag, and an optional print class number. The
command pq-edit is used to edit this database. The file is protected from access by untrusted software using
a unique file subtype.

4.7.2.10 Trusted Information Database

The Trusted Information database resides in the file /etc/trusted_info; the file is at the minimum sensi-
tivity and maximum integrity label. It contains the following system parameters: the device identifier of the
boot file system, password expiration time, password lifetime, time zone number to convert between local
and Greenwich time, daylight savings time flag, default login retry count, default terminal lockout interval,
default logout timeout, login banner, startup flag, the threshold number of audit files before displaying a
console warning message, a page numbering flag for system printers, and the Secure Server pool size. The
command param_edit is used to edit this database. The boot device number and the startup flag cannot be
modified by the command.

4.7.2.11 Audit Information Database

The Audit Information database resides in the file /system/audit_info; the file is at the minimum sensitivity
and maximum integrity label. It contains the following audit related information: threshold number of audit
files for warning messages, events, subjects, and objects to audit. The command param_edit is used to edit
this database. The file is protected from untrusted software access by using a unique file subtype.

74
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

4.7.2.12 Trusted Program Directory Database

The Trusted Program Directory database is in the form of a filesystem directory named /trusted. The
directory is at the minimum sensitivity and maximum integrity label. The directory’s owner and group are
“system” and “system,” respectively. The ACL on the directory allows read, write, and execute (search)
permissions to the owner, group, and world. The directory contains the executable images for all the trusted
programs callable from the Secure Server. The program files are at the minimum sensitivity and maximum
integrity label. The program files are owned by the user “system” and group “system.” The ACL on the
files allows read, write, and execute permissions to the owner, group and world. The command tp_edit is
used to edit this database, including modifying the program privilege set.

4.7.2.13 Configuration Database

The Configuration database resides in the file /system/config; the file is at the minimum sensitivity and
maximum integrity label. It has the following information: site configurable paging information, sync in-
terval, resource exhaustion delay, number of logical devices, and site identifier. The command param_edit is
used to edit this database.

4.7.2.14 Logical Device Data (LDD) Database

The LDD database resides in the file /system/1dd; the file is at the minimum sensitivity and maximum
integrity label. There is one entry for each logical device containing the following information: device-created
flag, the device type (major) and minor number, logical device ID, the first and last blocks of a partition
relative to the beginning of the physical device if the device is partitioned, the lowest MAC label allowed
for the logical device, and the highest MAC label allowed for the logical device. The command config_edit is
used to edit this database.

4.7.2.15 Daemon Attribute Database

The Daemon Attribute Database resides in the file /etc/daemon_info. The database contains information
about configured daemon programs. A system administrator uses the command daemon_edit to edit the
file. The database contains the following information for each daemon: name, executable program name,
whether the daemon should be activated when startup is run, whether the daemon executes in the OSS
domain, whether the daemon controls a device and its associated device identifier if so, the MAC label,
owner and group identifiers, and its process identifier if the daemon is currently running. The last field is
updated by the start_daemon and stop-daemon commands.

4.7.2.16 Secure Communications Subsystem (SCS) Database

The SCS database resides in the file scs_config; the file is at the minimum sensitivity and maximum integrity
label. The file contains the device identifier for the SCS. The config_edit is used to edit this database. This
file is empty in the evaluated configuration.

75
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

4.7.3 Trusted Commands

This section describes the commands a user can enter after the SAK is pressed. The Secure Server processes
the command if it exists in the Secure Server’s internal command list. If the command is not in the internal
command list, the Secure Server searches the Trusted Program Directory (see Section 4.7.2.12) and brings
in the trusted program corresponding to the command. For the list of privileges used by the Secure Server,
see Section 4.7.1.3, page 69. To execute a command, the user must possess the appropriate capabilities; for
the list of user capabilities, see Section 6.3.3, page 115.

4.7.3.1 User Trusted Commands

This section describes the commands available to all users. The commands allow a user to manipulate the
MAC and DAC attributes for the current session, and to create, attach, and destroy process families at
different MAC labels. Table 4.3 provides a list of the commands and required capabilities. The commands
are executed either by the Secure Server or by a program at the user’s MAC label. The privileges available
to the executing programs are also listed in the table. For the list of program privileges, see Section 6.3.4,
page 116.

4.7.3.1.1 Change Command Processor (ccp)

The ccp command allows a user to change his or her command processor. The user must possess the RUN
ALLOWED capability to use this command. The Secure Server processes this command.

4.7.3.1.2 Change Default Level (cdl)

The cdl command allows a user to change the default MAC label following login. The user must possess the
SET LEVEL capability to use this command. The Secure Server processes this command.

4.7.3.1.3 Change Home Directory (chd)

The chd command is used to specify a new home directory. The Secure Server processes this command.

4.7.3.1.4 Change User Password (cup)
The cup command allows a user or the system administrator to change the user’s password. The Secure Server

processes this command. The user (including the administrator) must possess CUP ALLOWED capability to
use this command.

4.7.3.1.5 Disconnect

The disconnect command is used to disconnect a process family from a terminal. The Secure Server processes
this command. The user must possess DISCONNECT ALLOWED capability to use this command. Upon

76
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

Table 4.3. User Trusted Commands

Command | Required Privileges
Capabilities

ccp RUN ALLOWED Secure Server

cdl SL ALLOWED Secure Server

chd None Secure Server

cup CUP ALLOWED Secure Server

df None SIMPLE_INTEGRITY_EXEMPT

disconnect | DISCONNECT ALLOWED | Secure Server

fsm None DISCRETIONARY_ACCESS_EXEMPT
INTEGRITY_STAR_PROPERTY_EXEMPT
SET_DISCRETIONARY_ACCESS
SET_LEVEL
SET_-OWNER_GROUP
SET_SUBTYPE_ACCESS
SIMPLE_INTEGRITY_EXEMPT
SIMPLE_SECURITY_EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT

ikill KILL ALLOWED Secure Server

kill KILL ALLOWED Secure Server

logout None Secure Server

reattach None Secure Server

run RUN ALLOWED Secure Server

session None Secure Server

sg SG ALLOWED Secure Server

sl SL ALLOWED Secure Server

system None Secure Server

77

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

disconnect, the user has no access to the processes in the family. If the processes are still active after the
user logs off, they continue to run. Since the user has no access to the process family, commands such as
session, kill, ikill, and reattach cannot be used for a disconnected process family. Only the proc_edit command
can be used to deal with a disconnected process family.

4.7.3.1.6 Display Free Blocks (df)

The df command reports the number of free disk blocks available on each mounted file system. The command
displays information on mounted file systems for which the maximum MAC label is less than or equal to the
user’s current MAC label.

4.7.3.1.7 File System Manager (fsm)

The fsm command allows a user or an administrator to delete or change the access attributes of a file or
a directory, or to create, copy, rename, or display a file or a directory. The Secure Server invokes the fsm
program to process this command. The program executes at the user’s MAC label. The program has the
following privileges:

DISCRETIONARY_ACCESS_EXEMPT to bypass the DAC check for the administrator and
to bypass file subtype checking for trusted databases

INTEGRITY_STAR_.PROPERTY_EXEMPT to generate audit records and to delete an entry
whose integrity is lower than that of the parent di-

rectory
SET_DISCRETIONARY_ACCESS to allow the administrator to change the ACL on an
object
SET_LEVEL to change the file MAC label
SET_-OWNER_GROUP to allow the administrator to change the file owner
and group
SET_SUBTYPE_ACCESS to allow the administrator to change the file subtype
SIMPLE_INTEGRITY_EXEMPT to allow the operator and administrator to examine

and copy lower integrity files

SIMPLE_SECURITY_EXEMPT to allow examining file system entries at higher sen-
sitivity (e.g., user authentication database)

SECURITY_STAR_PROPERTY_EXEMPT to delete an entry whose sensitivity label is higher
than that of the parent directory.

For a request to change the security attributes of a file, the fsm program ensures that the user is the owner
of the file system entry or is running at the administrator integrity level. The user must be at the same
sensitivity label and the same integrity label as the file system entry or at the file system entry’s sensitivity
label and administrator integrity level. For a request to change the MAC label, the kernel ensures that

78
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

the MAC label is within the range allowed for the file system on which the file system entry resides. The
requested MAC label should dominate the parent directory MAC label. If the entry is a directory, the new
MAC label must be equal to or less than the MAC label of any files or directories in it.

The fsm program further ensures that only the users with the UPGRADE ALLOWED capability can upgrade
an object; similarly, only the users with the DOWNGRADE ALLOWED capability can downgrade an object.
In addition, the user without the VIEWING OPTIONAL capability must display the file system entry before
downgrading it.

Using the fsm program, operators and administrators have the ability to override the integrity policy of the
system. That is to allow operators and administrators to examine and to copy low integrity programs (e.g.,
to install low integrity programs in the /trusted directory).

If the new attributes have either the setuid flag?! or the setgid flag set, the following conditions will override
these flags: if the effective group ID of the user is different from the new group ID in the new ACL, the
setgid flag will be reset; if the user or the group ownership of the file is being changed, the setuid and the
setgid flags will be reset; and if the new access modes contain any “write” permissions, the setuid and the
setgid flags will be reset.

4.7.3.1.8 Immediate Kill (ikill)

The ikill command allows a user to immediately terminate all the processes in a process family. The Secure
Server processes this command. The user must possess the KILL ALLOWED capability to use this command.

47319 Kill

The kill command allows a user to initiate the termination of all processes in a specified process family by
notifying the processes to terminate themselves. The Secure Server processes this command. The user must
possess the KILL ALLOWED capability to use this command.

473110 Logout

The logout command allows a user to log out of the system. All active processes associated with the user
terminal are killed, except for the processes that are disconnected from the terminal. The Secure Server
processes this command. The Secure Server releases the terminal and notifies the Secure Initiator to put the
Secure Server in the free pool.

47.3.1.11 Reattach

The reattach command allows a user to attach the terminal to a detached process family. The Secure Server
processes this request and ensures that the user’s MAC label and group are the same as those of the process
family. The Secure Server also releases the terminal to the process family and notifies the Secure Initiator
to put the Secure Server on the free pool.

?1Here setuid and setgid have the same meaning as in UNIX.

79
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

473.1.12 Run

The run command allows a user to initiate execution of a command processor from the terminal. The Secure
Server processes this command and makes sure that the user’s integrity level is below the OSS integrity level.
The Secure Server also ensures that the user has the RUN ALLOWED capability. The Secure Server assigns
the terminal a new subtype, releases the terminal to the new process, and notifies the Secure Initiator to
put the Secure Server on the free pool.

4.7.3.1.13 Session

The session command allows a user to display the status of the current session on the terminal. The Secure
Server processes this request by displaying the user name, group name, terminal major and minor number,
MAC label, and the process family information.

4.7.3.1.14 Set Group (sg)

The sg command allows a user to set the group ID for the current terminal session. The Secure Server
processes this request and ensures that the user has the SG ALLOWED capability.

4.73.1.15 Set Level (sl)

The sl command allows a user to set the MAC label of the current terminal session. The Secure Server
processes this request and ensures that the user has the SL ALLOWED capability. The Secure Server also
ensures that the new MAC label is dominated by the user’s maximum MAC label. The kernel ensures that
the new MAC label is within the terminal’s minimum and maximum MAC labels.

4731.16 System

The system command allows a user to display the system status on the terminal. The Secure Server processes
this command. The status includes current date and time, boot device number, boot file system name, system
release identifier, and site identifier.

4.7.3.2 Operator Trusted Commands

This section describes the additional commands available to the user with the integrity level of operator
or higher. These users can also execute all the commands described in the previous section, except for the
run command. The operator trusted commands are executed either by the Secure Server or by a program
at the user’s MAC label, except for the startup command. The Secure Server invokes the startup program
at the maximum MAC label. All of these commands require the user’s integrity level to be operator or
higher. This requirement is enforced either by the Secure Server or by the Trusted Loader. In addition,
the audit and pq-edit commands require the user to be at the maximum sensitivity label (to be able to
read maximum sensitivity files: audit files and the prq, respectively. Only two commands require a user

capability (SHUTDOWN ALLOWED is required for the dump and the shutdown commands). Table 4.4 and

80
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

Table 4.5 (page 83) provide a list of the operator trusted commands and the maximum privileges available
to the executing programs.

4.7.3.2.1 Audit

The audit command is used to switch the audit files, to select and to display portions of an audit file,
or to remove an audit file. The audit files are at the maximum sensitivity label and the administrator
integrity level. The audit program is invoked by the Secure Server to process this command. The audit
program restricts the use of this command to the users with maximum sensitivity label and operator or
higher integrity level. The program further limits the use of the “remove” and “display” options within the
command to the users with the administrator integrity level. The audit program has the following privileges:

SIMPLE_INTEGRITY_EXEMPT to allow an administrator to read the audit files

DISCRETIONARY_ACCESS_EXEMPT to bypass checking of file subtype for audit files.

47322 Check

The check command is used by the operator to check and repair a kernel flat file system. The Secure Server
invokes the check program to process the command. The program examines the file system to determine
that all storage areas are accounted for and that all allocated areas are mutually exclusive. The allocated
areas include the used data blocks, the free blocks list, and the defective blocks list. The program can also
clear segment branch entries upon user request. The program sets the “checked” flag (see Section 7.4, page

132).

The program executes at the user’s MAC label and requires no privileges. The program ensures that the
user is at or above the maximum sensitivity label of the filesystem. The program also ensures that the device
on which the filesystem resides is of the TRUSTED class. The kernel ensures that the user is at the same
MAC label as the logical device.

47323 Dump

The dump command allows an operator to dump the memory to a physical device and to initiate system
shutdown (see Section 4.7.3.2.13, page 86). The Secure Server ensures that the user’s integrity level is
operator or higher, and the user has the SHUTDOWN ALLOWED capability. The data is output to the
physical device without any MAC checks on the device and without any MAC labels on the output.

47324 Frestore
The frestore command allows an operator to selectively restore file system objects from a tape to disk. The

Secure Server invokes the frestore program to process this request. The program executes at the user’s MAC
label and has the following privileges:

SIMPLE_INTEGRITY_.EXEMPT to read directories with lower integrity labels

81
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

Table 4.4. Operator Trusted Commands

Command

| Privileges

audit

SIMPLE_INTEGRITY_EXEMPT
DISCRETIONARY_ACCESS_EXEMPT

check

None

dump

Secure Server

frestore

SIMPLE_INTEGRITY_EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT
SET_OWNER_GROUP
DISCRETIONARY_ACCESS_EXEMPT
SET_LEVEL

SET_SUBTYPE_ACCESS

fsave

SIMPLE_INTEGRITY_EXEMPT
DISCRETIONARY_ACCESS_EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT
SET_OWNER_GROUP

fscheck

None

mkfsys

None

mount

INTEGRITY_.STAR_.PROPERTY_EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT
SIMPLE_INTEGRITY_.EXEMPT

pq-edit

SIMPLE_INTEGRITY_EXEMPT
DISCRETIONARY_ACCESS_EXEMPT

scs_reboot

SECURITY_STAR_PROPERTY_EXEMPT
SIMPLE_INTEGRITY_.EXEMPT
DEVICE_.CONTROL_EXEMPT

sda

DEVICE_.CONTROL_EXEMPT
INTEGRITY_STAR_.PROPERTY_EXEMPT
SET_LEVEL
SET_DISCRETIONARY_ACCESS
SET_OWNER_GROUP
SIMPLE_INTEGRITY_.EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT

sdc

SIMPLE_INTEGRITY_.EXEMPT

shutdown

Secure Server

st

Secure Server

start_daemon

DISCRETIONARY_ACCESS_.EXEMPT
INTEGRITY_STAR_.PROPERTY_EXEMPT
SET_OWNER_GROUP
SIMPLE_INTEGRITY_.EXEMPT
SIMPLE_SECURITY_EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT

FINAL: July 11, 1995

82

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

Table 4.5. Operator Trusted Commands

| Command

Privileges

startup

DEVICE_.CONTROL_EXEMPT
DISCRETIONARY_ACCESS_.EXEMPT
SET_OWNER_GROUP
SIMPLE_INTEGRITY_EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT
TERMINAL_LOCK

stop-daemon

DISCRETIONARY_ACCESS_.EXEMPT
INTEGRITY_STAR_.PROPERTY_EXEMPT
SET_OWNER_GROUP
SIMPLE_INTEGRITY_EXEMPT
SIMPLE_SECURITY_EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT

unmount

INTEGRITY_STAR_.PROPERTY_EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT
SIMPLE_INTEGRITY_EXEMPT

SECURITY_STAR_PROPERTY_EXEMPT

SET_OWNER_GROUP

DISCRETIONARY_ACCESS_EXEMPT

SET_LEVEL

SET_SUBTYPE_ACCESS

to write directories with lower sensitivity labels

to change the owner and group of objects being re-

stored

access controls

to write directories regardless of their discretionary

to modify the object’s MAC label

to modify the object’s subtype.

The program ensures that the class of the source device is USER and the class of the destination device
is KERNEL. The kernel ensures that user’s sensitivity label and integrity label dominate those of the file

system objects. This is especially important to the enforcement of role separation.

A user at operator

integrity cannot restore a file stored at administrator integrity. The kernel also ensures that the user’s MAC
label is the same as that of the source device.

47325 Fsave

The fsave command is used by an operator to selectively save file system objects onto a tape from disk. The
Secure Server invokes the fsave program to process this command. The program executes at the user’s MAC
label and has the following privileges:

SIMPLE_INTEGRITY_.EXEMPT

83

to read objects with lower integrity labels

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

DISCRETIONARY_ACCESS_EXEMPT to read objects regardless of their discretionary access
controls

SECURITY_STAR_PROPERTY_EXEMPT to update access times of directories that have lower
sensitivity labels

SET_-OWNER_GROUP to maintain the labels of lower sensitivity objectswhen
updating the access times of objects.

The program ensures that the class of the source device is KERNEL the class of the destination device is
USER. The kernel also ensures that the user’s sensitivity label and integrity label dominate those of the file
system objects. The kernel ensures that the user’s MAC label is the same as that of the target device.

4.73.2.6 File System Check (fscheck)

The fscheck command allows an operator to check and repair the hierarchical file system. The Secure Server
invokes the fscheck program to process this command. The program ensures that all links in the file system
are valid, all segments are accounted for and each segment is in exactly one file system object, and that all
segments are of proper size. It removes all directory entries to nonexistent file system objects, removes all
upward links to nonexistent parent directories, places all unreferenced file system objects in the /lost+found
directory, removes all unreferenced empty files that cannot be put in the /lost+found directory, offers to
remove all unreferenced non-empty files that cannot be put in the /lost+found directory, removes all data
segments with no file control areas, repairs all file size errors, and repairs file control areas that reference
nonexistent data segments. It also deletes unreferenced device special files, FIFOs, and empty directories.

The program runs only if the “checked” flag is set (i.e., the check program has been run). The program
clears the “mounted” and “checked” flags (see Section 7.4, page 132) to allow the mounting of the filesystem.

The program executes at the user’s MAC label and requires no privileges. The MAC requirements are the
same as those previously described for the check command. The program ensures that the device class is

TRUSTED.

4.7.3.2.7 Make File System (mkfsys)

The mkfsys command is used by an operator to initialize a hierarchical file system. The Secure Server invokes
the mkfsys program to process this command. The program creates a root directory for the filesystem at the
minimum level of the filesystem with the owner and the group IDs of the user. The remaining data blocks
are placed on the free blocks list.

The program executes at the user’s MAC label and requires no privileges. The program ensures that the
logical device containing the file system is of the TRUSTED class. The program ensures that the user is at
or above the maximum sensitivity label of the filesystem. The kernel ensures that the user is at the same
MAC label as the device on which the filesystem is being created.

84
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

4.7.3.2.8 Print Queue Editor (pq-edit)

The pq-edit command allows an operator to edit and display the print queue. The Secure Server invokes
the pq-edit program to process this command. The program executes at the user’s MAC label and has the
following privileges:

SIMPLE_INTEGRITY_EXEMPT to examine the file or directory of lower integrity to obtain
the print file name

DISCRETIONARY_ACCESS_EXEMPT to examine the requestor’s files and directories and to
bypass file subtype check for trusted databases.

The kernel ensures that the user is at the maximum sensitivity label.

47329 Mount

The mount command allows an operator to mount a filesystem. The Secure Server invokes the mount program
to process this command. The program executes at the user’s MAC label and has the following privileges:

INTEGRITY_.STAR_PROPERTY_EXEMPT to mount a filesystem whose maximum integrity level
is higher than that of the user

SECURITY_STAR_PROPERTY_EXEMPT to mount a filesystem whose minimum sensitivity
label is lower than that of the user

SIMPLE_INTEGRITY_EXEMPT to mount a filesystem whose maximum integrity la-
bel is lower than that of the user.

The kernel imposes the following constraints: The class of the device containing the file system must be
TRUSTED. The user’s MAC label must be equal or above that of the device and equal to or above the
root of the filesystem and the user’s integrity must be operator or above. The filesystem minimum and
maximum MAC labels must be bounded by the defined system minimum and maximum MAC labels. The
mount program ensures that the filesystem has an entry in the File System Name Table.

4.7.3.2.10 Secure Communications Subsystem Reboot (scs_reboot)

The scs_reboot command reboots an SCS network device. The user must be at or above the MAC label
of the network device to be rebooted. The program executes at the user MAC label and has the following
privileges:

SECURITY_STAR_PROPERTY_EXEMPT to issue reboot control requests to lower sensitivity
network devices
SIMPLE_INTEGRITY_.EXEMPT to read a lower integrity network device

DEVICE_.CONTROL_EXEMPT to issue reboot control requests to higher integrity net-
work devices.

85
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

The kernel ensures that the user is at or above the MAC label of the network device. Before invoking the
scs_reboot command, the Secure Server ensures the user’s integrity level is operator or higher.

4.7.3.2.11 Set Device Access (sda)
The sda command allows an operator to change the MAC label and ACL of devices, except for the terminals

and line printers. The Secure Server invokes the sda program to process this request. The program executes
at the user’s MAC label and has the following privileges:

INTEGRITY_.STAR_.PROPERTY_EXEMPT to set the attributes of higher integrity devices

SET_LEVEL to set the MAC label of a device

SET_DISCRETIONARY_ACCESS to set the ACL of a device

SET_-OWNER_GROUP to set the owner and group of the device for non-
terminal communications devices

SIMPLE_INTEGRITY_EXEMPT to obtain the attributes of lower integrity devices

SECURITY_STAR_PROPERTY_EXEMPT to set the attributes of lower sensitivity devices.

The sda command ensures that the user’s sensitivity label dominates that of the device.

4.7.3.2.12 Set Device Class (sdc)
The sdc command allows an operator to change the class of a disk device to one of the following types:

kernel, trusted, user. The Secure Server invokes the sdc program to process this command. The program
executes at the user’s MAC label and requires the following privileges:

SIMPLE_INTEGRITY_EXEMPT to obtain the device class of a lower integrity device.

The sde command ensures that the user’s sensitivity label dominates that of the device. If the device contains
multiple logical devices, the user’s sensitivity label must dominate those of all the logical devices.

4.7.3.2.13 Shutdown
The shutdown command allows an operator to initiate system shutdown. The Secure Server calls the kernel

gate shutdown to process this command. Before calling the kernel gate, the Secure Server ensures that the

user’s integrity level is operator or higher, and the user has the SHUTDOWN ALLOWED capability.

4.7.3.2.14 Set Time (st)

The st command allows an operator to set the system clock. The Secure Server processes this command and
ensures that the user’s integrity level is operator or higher.

86
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

4.7.3.2.15 Start Daemon (start_daemon)

The start_daemon command allows an operator to activate processes that have been configured using the
daemon_edit command. The start_.daemon command executes at the user’s MAC label and has the following
privileges:

DISCRETIONARY_ACCESS_.EXEMPT to send a message to an executing daemon process
that has discretionary access permissions on messages
sent to the process

INTEGRITY_.STAR_-PROPERTY_EXEMPT to open the Daemon Attribute database from an in-
tegrity level below the maximum and to start a higher
integrity daemon process

SET_-OWNER_GROUP to kill a daemon process that has an owner different
from the current user of the command and to start a
daemon process with a different owner and/or group
from that of the current process

SIMPLE_INTEGRITY_EXEMPT to check for the existence of a daemon, to kill a lower
integrity daemon, and to start a lower integrity dae-
mon

SIMPLE_SECURITY_EXEMPT to check for the existence of a daemon and to kill a

higher sensitivity daemon

SECURITY_STAR_PROPERTY_EXEMPT to open the Daemon Attribute database from a se-
curity level above the minimum and to start a lower
sensitivity daemon process.

Before invoking the start_.daemon command, the Secure Server ensures the user’s integrity level is operator
or higher.

4732.16 Startup

The startup command allows an operator to notify the system to start processing SAKs from other terminals
(i.e., other than the console). The Console Server processes this command by invoking the startup program
only if the “startup” flag in the Trusted Information Database is set to “false.” The flag is set to “false”
by the Secure Startup process and is set to “true” by the startup program. This mechanism prevents the
TCB from executing multiple startup commands. The program enables the MLX terminal lines, so that the
MLX firmware can interrupt the system when the users hit the SAK, putting the system in the multi-user
mode. Since the startup program executes with the TERMINAL_LOCK privilege, the SAK messages during
its execution are sent to it by the kernel. The program sends these messages to the Secure Initiator for
processing. The startup program executes at the maximum MAC label and has the following privileges:

DEVICE_.CONTROL_EXEMPT to open a terminal in control mode
DISCRETIONARY_ACCESS_EXEMPT to map a device
87

FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

SET_-OWNER_GROUP to set ownership of the current process
SIMPLE_INTEGRITY_EXEMPT to map a lower integrity device
SECURITY_STAR_PROPERTY_EXEMPT to map a lower sensitivity device
TERMINAL_LOCK to map a locked terminal.

Before invoking the startup program, the Secure Server ensures that the user’s integrity level is operator or

higher.

4.7.3.2.17 Stop Daemon (stop_daemon)

The stop_daemon allows an operator to terminate a daemon process that has been configured with the
daemon_edit command. The stop_daemon command executes at the user’s MAC label and has the following
privileges:

DISCRETIONARY_ACCESS_EXEMPT to send a message to an executing daemon process
that has discretionary access permissions on messages
sent to the process

INTEGRITY_STAR_.PROPERTY_EXEMPT to open the Daemon Attribute database from an in-
tegrity level below the maximum and to start a higher
integrity daemon process

SET_-OWNER_GROUP to kill a daemon process that has an owner different

from the current user of the command

SIMPLE_INTEGRITY_EXEMPT to check for the existence of a daemon and to kill a
lower integrity daemon

SIMPLE_SECURITY_EXEMPT to check for the existence of a daemon and to kill a
higher sensitivity daemon

SECURITY_STAR_PROPERTY_EXEMPT to open the Daemon Attribute database from a secu-

rity level above the minimum.

Before invoking the stop_daemon command, the Secure Server ensures the user’s integrity level is operator
or higher.

4.7.3.2.18 Unmount

The unmount command allows a user to unmount a filesystem. The Secure Server invokes the unmount
program to process this command. The program executes at the user’s MAC label and has the following
privileges:

INTEGRITY_.STAR_PROPERTY_EXEMPT to unmount a filesystem whose maximum integrity
level is higher than that of the user

88
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

SECURITY_STAR_PROPERTY_EXEMPT to unmount the filesystem of lower sensitivity

SIMPLE_INTEGRITY_EXEMPT to unmount the filesystem of lower integrity.

The kernel imposes the following constraints: The class of device containing the filesystem must be KERNEL.
The filesystem must be mounted. The user’s MAC label must equal that of the device and of the root of the
filesystem. Alternatively, unmount is permitted if the user’s sensitivity label is equal to that of the device
and that of the root of the filesystem, and the user’s integrity label is operator or above.

4.7.3.3 Administrator Trusted Commands

This section describes the additional commands available to the user with the integrity level of administrator.
These users can also execute all the commands available to the untrusted users and to the operators, except
for the run command. The administrator trusted commands are executed either by the Secure Server or by a
program at the user’s MAC label. All of these commands require the user’s integrity level to be administrator.
This requirement is enforced either by the Secure Server or by the Trusted Loader. None of the commands
requires any user capability. Table 4.6 provides a list of the administrator trusted commands, required MAC
labels, and the maximum privileges available to the executing programs.

Table 4.6. Administrator Trusted Commands

Command Required | Required | Privileges

Sens. Integ.
Label Label
config_edit Min. Max. None
ctl -— >Admin | None
daemon_edit | Max. Max. None
fsnt_edit Min. Max. None
ga_edit Max. Max. SECURITY_STAR_PROPERTY_EXEMPT
DISCRETIONARY_ACCESS_EXEMPT
param_edit Min. Max. DISCRETIONARY_ACCESS_EXEMPT
proc_edit Min. Max. SET_-OWNER_GROUP

SIMPLE_INTEGRITY_EXEMPT
SECURITY_STAR_PROPERTY_EXEMPT
scs_config - Max. SECURITY_STAR_PROPERTY_EXEMPT
SIMPLE_INTEGRITY_.EXEMPT
DEVICE_.CONTROL_EXEMPT

sm_edit Min. Max. None
tp-_edit Min. Max. SIMPLE_INTEGRITY_EXEMPT
SET_LEVEL

SET_OWNER_GROUP
SECURITY_STAR_.PROPERTY_EXEMPT
ua_edit Max. Max. SECURITY_STAR_PROPERTY_EXEMPT
DISCRETIONARY_ACCESS_EXEMPT

89
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

4.7.3.3.1 Configuration Editor (config_edit)

The config_edit command allows an administrator to edit the following system configuration related databases:
configuration, logical device data, printer information, and terminal configuration. The Secure Server invokes
the config_edit program to process this command. The program executes at the user’s MAC label and requires
no privileges. The MAC policy dictates that the user is at the minimum sensitivity and the maximum
integrity label. Adding or removing logical devices initiates system shutdown. Changes to the databases
take effect upon reboot, except that the changes to a terminal entry in the terminal configuration database
take effect when SAK is hit on that terminal.

4.7.3.3.2 Cancel Terminal Lockout (ctl)

The ctl command is used by the system administrator to reenable a locked-out terminal. The Secure Server
processes this command and ensures that the user’s integrity level is administrator.

4.7.3.3.3 Daemon Attributes Database Editor (daemon_edit)

The daemon_edit command allows an administrator to read and modify the Daemon Attribute database.
The daemon_edit command executes at the user’s MAC label and requires no privileges. Before activating
the command, the Secure Server ensures that the user’s integrity level is administrator.

4.7.3.3.4 File System Name Table Editor (fsnt_edit)

The fsnt_edit command allows an administrator to edit the file system mount entries in the root directory
of the boot file system. The Secure Server invokes the fsnt_edit program to process this command. The
program executes at the user’s MAC label and requires no privileges. The MAC policy dictates that the
user be at the minimum sensitivity and maximum integrity label.

4.7.3.35 Group Access Database Editor (ga_edit)
The ga_edit command allows an administrator to edit the Group Access Authentication and Group Access
Information databases. The Secure Server invokes the ga_edit program to process this command. The changes

to the database take effect at the next login and do not affect the current users operating in a modified or
deleted group. The program executes at the user’s MAC label and has the following privileges:

SECURITY_STAR_PROPERTY_EXEMPT to update the Group Access Information database

DISCRETIONARY_ACCESS_EXEMPT to bypass file subtype checking for trusted databases.

The kernel ensures that the user is at the maximum MAC label since the group access authentication database
is at that label.

90
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.7. TRUSTED SOFTWARE

4.7.3.3.6 System Parameter Editor (param_edit)

The param_edit command allows an administrator to edit the Trusted Information and Audit Profile data-
bases. The Secure Server invokes the param_edit program to process this request. The program executes at
the user’s MAC label and has the following privilege:

DISCRETIONARY_ACCESS_EXEMPT to bypass checking of file subtype for the audit profile

database.

Since the database is at the minimum sensitivity and the maximum integrity MAC label, the MAC policy
requires that the user be at the same MAC label.

4.7.3.3.7 Process Editor (proc_edit)

The proc_edit command allows an administrator to display and terminate processes in the system. The
Secure Server invokes the proc_edit program to process this request. The program executes at the user’s
MAC label and has the following privileges:

SET_-OWNER_GROUP to terminate the processes of other users
SIMPLE_INTEGRITY_EXEMPT to obtain the status of processes with lower integrity
labels

SECURITY_STAR_PROPERTY_EXEMPT to terminate a process with lower sensitivity labels.

4.7.3.3.8 Secure Communications Subsystem Configuration Program (scs_config)
The scs_config command allows an administrator to download configuration information to an SCS network

device. The scs_config command executes at the userMAC level which must be at or above the MAC label
of the network device, and has the following privileges:

SECURITY_STAR_PROPERTY_EXEMPT to issue reboot control requests to lower sensitivity
network devices

SIMPLE_INTEGRITY_EXEMPT to read a lower integrity network device

DEVICE_.CONTROL_EXEMPT to issue reboot control requests to higher integrity net-
work devices.

Before activating the ses_config command, the Secure Server ensures that the user’s integrity level is admin-
istrator.

91
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

4.7.3.3.9 Security Map Editor (sm_edit)

The sm_edit command allows an administrator to edit the security map database. The Secure Server invokes
the sm_edit program to process this command. The program executes at the user’s MAC label and requires
no privileges. The kernel ensures that the user is at the minimum sensitivity and the maximum integrity
label. Aliases (e.g., short names) for MAC labels can also be established through the sm_edit command.
Each alias must be unique.

4.7.3.3.10 Trusted Program directory Editor (tp_edit)

The tp_edit command allows an administrator to edit the Trusted Program Directory databases (/trusted
(see Section 4.7.2.12, page 75) and to modify the security attributes of programs in the /system directory.
The administrator can also use the command to change the privileges and the integrity label of a program.
The Secure Server invokes the tp_edit program to process this command. The program executes at the user’s
MAC label and has the following privileges:

SET_LEVEL to set the mandatory access level of a replacement file to
the level of the file being replaced

SET_-OWNER_GROUP to set the ownership and discretionary attributes of a
replacement file to those of the file being replaced

SIMPLE_INTEGRITY_.EXEMPT to read lower integrity program files

SECURITY_STAR_PROPERTY_EXEMPT to alter the security attributes of programsin the /system
directory.

The MAC policy dictates that the user be at the sensitivity level of the program file and at the maximum
integrity label. The program does not allow the MODIFY_PRIVILEGE privilege to be assigned to any
program. The program allows privileges to only those programs with the integrity level of operator or

higher.

4.7.3.3.11 User Access Database Editor (ua_edit)

The ua_edit command allows an administrator to modify the User Access Authentication and the User Access
Information databases. The Secure Server invokes the ua_edit program to process this command. Removing
a user entry does not affect the current session of the user or any objects owned by the user until the SAK
is pressed. When the SAK is processed, the Secure Server will log out the user. When a user’s clearance is
lowered or changed to a level incomparable to the current one, the administrator is directed by a procedure
documented in the TFM to delete all of the current user’s processes and to delete all of the files to which the
user no longer has access. The program executes at the user’s MAC label and has the following privileges:

SECURITY_STAR_PROPERTY_EXEMPT to update the User Access Information database.
DISCRETIONARY_ACCESS_EXEMPT to bypass file subtype checks for the trusted data-

bases.

The MAC policy dictates that the user of this command be at the maximum MAC label.

92
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.8. COMMODITY APPLICATION SYSTEM SERVICES (CASS)

4.8 Commodity Application Syst m S ic s CASS

CASS provides an environment on the XTS-300 su cient to allow the execution of UNIX-based applica-
tions; that is, CASS provides a UNIX-like interface to the user. Additionally, CASS provides extensions
to allow application software to utilize the multilevel secure execution environment. Thus, CASS provides
the necessary services to support both existing UNIX-based software and new applications that are specific
to the XTS-300. XTS-300 provides an environment that complies as closely as possible with specifications
for UNIX System V, Release 3.0 3, the American National Standards Institute (ANST) Standard for the
Programming Language C 2, and the IEEE P1003.1 Portable Operating System Interface for Computer
Services (POSIX) 7 and the Intel Binary Compatibility Standard (BCS) 8 .

To reduce the size of the TCB, the services provided by CASS are not, in general, provided by the TCB.
Whenever possible, the execution environment furnished by CASS is provided by either untrusted services
operating in the OSS Domain, utilizing the more primitive underlying TSS and the Security Kernel, or by
application runtime libraries operating in the Application Domain. Though CASS and Trusted Software
both execute within the OSS Domain, only one of the two will execute during the lifetime of a particular
process. There is never a transfer of control between the two. Within the OSS Domain, only CASS executes
in an untrusted process and only Trusted Software executes in a trusted process.

The untrusted CASS software is included in each process’s memory address space to allow most process
creation operations to be simpler and quicker. This means that the hardware does not prevent the OSS
Domain software in a trusted process from transferring control to CASS. CASS software is never needed by
a trusted process and, since it is not trusted, must not be used by a trusted process. OSS Domain software
in a trusted process is trusted and will never use the segment of a process’s memory address space that is
reserved for CASS Text (segment 5).

When XTS-300 is executing an untrusted commodity application process, the OSS Domain is outside of
the TCB and contains the CASS software which converts the primitive TCB interface to an application-
usable interface. CASS is responsible for providing I/O services and process control services to commodity
applications. Although untrusted, CASS is considered high-integrity system software. That is, the CASS
layer provides untrusted operating system services to application software.

CASS runs in the OSS Domain. Application programs started by CASS run in the Application Domain at
an integrity level below OSS. Neither CASS nor user application programs can run with privilege.

CASS supports 105 main shell commands and 20 internal shell commands.

CASS is entered via the enter. ss_ te. CASS processes the gate request for function code validation via
the function pro ess. ss_. te._request, obtaining the gate function pointer, and saving the environment
for gates that can be interrupted by signals. A User Domain process calls the gate function via the 11_

tefun t on. On return from the gate, the IPC queue is drained and a check is made for signals to be
processed.

CASS can also be invoked by the Secure Server run command which causes CASS to be loaded by TSS 1o d.
pro ess. CASS is entered via the ss_entrypo nt. This causes the CASS managers to be initialized.

93
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

The user information i1s then extracted from the User Access Information database and a terminal control
process is created. The default command processor is then started.

The CASS environment consists of runtime libraries that operate in the User Domain, and system calls that
execute in the OSS Domain of the XTS-300. These components include the following:

Runtime libraries to provide UNIX equivalent subroutine calls
UNIX equivalent system calls

XTS-300 specific system calls.

4. .2. le stem er 1 es

The File System Services pass information to TSS which performs the necessary policy enforcement prior
to returning the information to CASS. CASS routines use the hierarchical file system provided by TSS.
The MAC and DAC policies of the system are always enforced to ensure that CASS is unable to violate the
security policy. CASS is claimed by Wang to be nonmalicious code.

An application requesting the creation of a file system object must be at the MAC label of the new object’s
parent directory and must possess write permission to the directory as defined by its ACL. When a file
system object is created, its MAC label is identical to the MAC label of the creating process; its access
modes are equal to the logical AND of the requested modes and the ones complement of the value
for the application. Access modes are mapped into the ACL by TSS.

4. .2.2 nput Output er i es

The CASS I/0 system services function in the same manner as the respective UNIX system calls. With the
exception of the system service, which provides an interface that allows processes to control character
devices, I/O system services treat all file system objects as regular files.

4. .2.3 ro ess Contro er 1 es

The Process Control Services provided by CASS perform process initialization and termination operations
on behalf of the application. Additionally, CASS Process Control Services are responsible for IPC Message
Management, Kill Management, Trap Management, and the management of process-related information
obtained from the TSS or Kernel Domains.

94
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
4.8. COMMODITY APPLICATION SYSTEM SERVICES (CASS)

4. .2.4 C essa e ana ement

CASS is responsible for the management of all IPC messages directed to the process. It makes the receipt of
all messages transparent, except for those messages to be delivered to the application via signals as specified
by the system service.

4. .2. CA 1 ana ement

CASS is responsible for handling the deletion of the OSS Domain portion of user processes. Process termi-
nation is accomplished by the kernel for the process environment not handled by CASS. Standard UNIX
kill notification is used to inform the user of the process deletion.

4. .2. CA Trap ana ement

CASS is responsible for handling any trap information passed from the TSS Trap Manager to CASS. These
include both external traps and internal traps. External traps are those caused by software executing in the
User Domain and internal traps are those caused by CASS software executing in the OSS Domain.

CASS makes the receipt and handling of internal traps transparent to the User Domain except when the
trap will result in process termination. External traps are made transparent to the untrusted application,
except for those traps to be delivered to the application via signals in the manner specified by the
system service.

CASS interfaces with the kernel (ring 0) and TSS (ring 1) through gates callable from untrusted software.
CASS has no interface to and does not interact in any way with Trusted Software. Untrusted applications
running in ring 3 must interface with CASS to invoke services provided by the TCB.

95
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 4. SOFTWARE OVERVIEW

T is pa e intentiona et an

96
FINAL: July 11, 1995

Final Evaluation Report Wang XTS-300

The primary purpose of a Trusted Computing Base (TCB) is to mediate the data flow between, and to
provide protection of, selected entities in a computing system. Entities in a computing system fall into two
classes: active and passive. Active entities are those pieces in a computing system that do things they
cause information to flow or change the system state (for example, processes or executing device driver code).
Passive entities are those pieces of a system that logically contain or receive information (for example, files,
devices, memory segments, etc.). Note that an entity may have both active and passive aspects (for example,
a device).

The active and passive entities that are under the control of the system security policy as enforced by the
TCB are called subjects and objects. Subjects correspond to active entities and objects to passive entities, all
under control of the TCB. The target rating for a system determines the extent to which identified subjects
and objects must be protected by the TCB; at the B3 rating, all identified subjects and objects must be
protected.

The following sections enumerate the subjects and objects of STOP 4.1, and discuss their attributes and life
cycles.

. S cts

STOP 4.1 supports only one type of subject: a process.!

For each subject, in addition to the current ring of execution, the system maintains the following security-
relevant information in the kernel Active Process Table:
The real user and group identifiers (IDs). This identifies the user and group responsible for the subject.

The effective user and group IDs. This identifies the user and group on whose behalf the subject is
operating. It is the effective user and group IDs that are used in the discretionary access checks.

The clearance of the user on whose behalf the subject is operating.
The Mandatory Access Control (MAC) label (i.e., sensitivity and integrity labels) of the subject.

The object subtypes (see Section 6.3.2, page 114) to which the subject has access.

1 his de niti nis inde endent thed main e eutin the r ess hi hma hange duringthe r esss ietime
re am e asthe r esstransiti ns et een hard arerings . In . as ngasthe r essisa tive itisasu e t.

97
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 5. TCB PROTECTED RESOURCES

The effective privileges (see Section 6.3.4, page 116) of the subject.

The maximum privileges of the subject.

Subjects can only be created by other subjects.? At the TCB interface, subjects are created via the 1o d_
pro ess and for _pro ess TCB System Services (TSS) gates. When lo d_pro ess, is used, the kernel
creates a new subject environment that executes within the TCB until the TSS program loader relinquishes
control. With lo d_pro ess, the new process environment is determined solely by the attributes of the
program file. If the program being loaded has an integrity level greater than or equal to operator, the
subject continues to execute within the TCB when loading is complete (i.e., it is a “trusted” subject). If
the program is of an integrity level below operator, the subject executes outside the TCB when loading is
completed (i.e., it is an “untrusted” subject). or _pro ess, the other subject creation path provided to
untrusted code, creates a new subject whose environment is identical to that of the parent subject, with the
exception that open devices are not inherited by the child subject. In this case, the new subject executes
within the TCB until for _pro ess terminates; execution then resumes at the same point in parent and
child. In all cases, the TCB interface provides trusted subjects with the ability to create both trusted and
untrusted subjects; however, it restricts untrusted subjects to the creation of untrusted subjects. Details
on subject creation and the address space provided to a subject may be found in Section 4.6.1, page 62.
Subjects are destroyed by the rele se_pro ess gate.

. cts

Subjects provide no utility without information with which to work. This information is obtained through
interaction with objects, which are the entities in a trusted system that contain information. Control over
this interaction is defined by the system security policy, which has mandatory and discretionary components.
The discretionary controls are applicable only to the subset of objects that can be named by users outside the
TCB. Supplemental mechanisms within the system provide finer control on the accessibility of information
within objects, as well as providing assurance that reuse of objects cannot result in information flow.

The following sections describe the objects of STOP 4.1. For each type of object, a description of the
security-relevant characteristics of the object, as well as the methods of object creation and destruction, are
given. The objects to be discussed are: segments, processes, devices, files, directories, device special files,
and named First-In First-Outs (FIFOs).

2 he rstsu e tinthes stem thes stem ader is reated the tstra ader.

98
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
5.2. OBJECTS

Segments are the basic information repository in the STOP 4.1 system. The kernel imposes no structure
upon segments; however, the TSS layer uses segments to build other objects (see Section 5.2.4) at higher
levels of abstraction. Segments possess the following security-relevant characteristics:

The MAC label (see Section 6.2.1.1, page 106) for the segment.

The owner of the segment (user and group identifiers).

The access control list (see Section 6.2.2, page 107) for the segment. This space is allocated by the
kernel as part of the segment for use by the DAC enforcement mechanisms in TSS.

The descriptor privilege level (see Section 3.4.3.5, page 22) for the segment.
The segment subtype that must be possessed to access the segment.

The segment class and subclass. The kernel supports two classes of segments: temporary and perma-
nent. Temporary segments cease to exist when no longer part of any subject address space; permanent
segments exist even when not being used by any subject. There are two predefined subclasses of
temporary segments: private and shared. There are no predefined subclasses for permanent segments.

Segments are created via the re te_se ment kernel gate, which is not available outside Ring 1. This gate is
abstracted by TSS into calls used by Operating System Services (OSS) that manipulate higher level named
objects, such as file system objects (open_fs, re ted re tory, etc.) and temporary segments (re te_
pr tese ment, re tes red_se ment). Segments are destroyed either through the file system or by
the unm p_oss_se ment gate.

Processes differ from segments in that they are considered to be both active subjects and storage objects.
The storage object determination arises from the fact that (a) processes may be the target of an interprocess
communication (IPC) message, and (b) processes contain accessible status information.

When viewed as an object, processes have the following security relevant characteristics:

The MAC label of the process

The effective owner of the process (user and group identifiers), for Discretionary Access Control (DAC)
purposes

The access control list for the process

The process subtype that must be possessed in order to access the process.

See Section 4.6.1, page 62, for a discussion of process creation and destruction.

In . a segments are nsideredt e . H ever a segments are n t asn ta
t es segments an ee iit named utside the . neam e n nnamed e t segments might e the e
data segments a e. am es named segments ud ethe e ntr segment the e named thr ugh the e
s stem r ashared tem rar segment.
his a e an hange during the ietime a et. ee etin ... age r a dis ussi n n tran ui it .
99

FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 5. TCB PROTECTED RESOURCES

Devices are classified as objects in STOP 4.1 because (a) devices serve as gateways for information, and,
as such, may be viewed as abstract repositories of information; and (b) devices contain accessible status
information. They have the following security-relevant characteristics:

The MAC label of the device. This MAC label is constrained by the MAC label range associated with
the system limits. This is described in more detail on Section 6.2.1.1, page 106.

The effective owner of the device (user and group identifiers), for DAC purposes
The access control list for the device
The device subtype that must be possessed in order to access the device.

The device class (TRUSTED, USER, MOUNTED, and TERMINAL). The TRUSTED class is used for
disk logical devices that are to be used by trusted services (e.g., check, fscheck, mkfsys). The USER
class is used to specify those devices to which untrusted programs are to have access. The MOUNTED
class is used to designate disk logical devices that are currently mounted. The TERMINAL class is
used to designate devices that are configured for use as a terminal.

For disk devices, each partition has its own class (i.e., is a logical device). In order to change the
class, all use of the device must be terminated. Tt must be unmapped (if a USER device) and have all
filesystems unmounted (if MOUNTED).

Devices are created via the re te.de e kernel gate. The kernel restricts device creation to subjects that
possess an integrity level of administrator or greater. The kernel allows sharing of devices; however, devices
can only be shared by processes running at the same MAC label as the device.

To delete a device from the system, the remo e.de e kernel gate is used. Device status is obtained through
the et_de e_st tus kernel gate. Additional information about and the amount of free space available
on a disk holding a mounted kernel file system is returned if the user has MAC read access to the level of
the device.

One of the services provided by the TSS layer of STOP 4.1 is the abstraction of a hierarchically structured
file system. This abstraction supports four types of file system objects: files, directories, device special files,
and named FIFOs (pipes). Each of these file system objects is constructed by TSS out of segments; the
specific type of file system object is encoded in the partition portion of the segment uid. As a result of file
system objects being abstractions built on segments, MAC enforcement and object reuse control are done at
the segment level; DAC, however, is done at the level of the file system object, based on the DAC entry in
the control segment for the file system object (the DAC information on any file data segments is not used).

.2.4. 1es

The most common type of file system object in STOP 4.1 is the file. A file consists of a file control segment
(where the initial portion of the data is stored) and a number of file data segments. MAC information on the

100
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
5.2. OBJECTS

file is maintained on all segments which comprise the file (fscheck checks to ensure that all of those segments
have the same MAC label); however, DAC information for the file as a whole is maintained only in the DAC
entry on the file control segment.

The file control segment for an executable file (which contains the internal file header) also contains the
following additional security-relevant information:

The maximum authorized privilege set to be used

The minimum integrity label required to execute the file.

Files are created using the TSS open_fs gate. Files are deleted using the delete.o e t and remo el n
TSS gates.

.2.4.2 ire tories

A directory is a special type of file system object that is used to construct a hierarchical file system. The
file system code in TSS enforces the restriction that, within a file system hierarchy, the mandatory level of
a directory must be dominated by the mandatory level of each object in the directory.

The file system also supports a special type of directory called a deflection directory. This type of directory
automatically redirects unprivileged users into the appropriate hidden single level subdirectory. This is
described in more detail in Section 4.6.3, page 63.

Directories are created using the TSS re te_d re tory gate. Directories are deleted using the T'SS remo e_
d re tory and delete.o e t gates. A directory must be empty to be removed.

.2.4.3 ele peia 1les

Device special files serve as the way that devices are designated through the file system. A device special file
has a fixed structure: it is a UNIX-style major/minor number that is mapped by TSS into a device-unique
ID for the actual device.

Device special files are created using the TSS re tede e_spe 1 gate. They are removed using the
deleteo e tand remo el n TSS gates.

The discretionary access controls on the segments that make up device special files are ignored, as TSS does
not allow a subject any direct access to a device special file. The only way to obtain information from a
device special file is via the structure, which contains the major/minor numbers. It is up to untrusted
software to map these major/minor numbers to device-unique IDs. Only when the actual device is opened
via open.de e are checks made. The checks are based on information on the device, not on the device
special file.

Users running at an integrit eve a ve an ti na ass the de e ti n.

101
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 5. TCB PROTECTED RESOURCES

.2.4.4 amed Os

Named FIFOs provide a method to support the UNIX “named pipe” concept. They provide a permanent
“First-In First-Out” communication path between multiple processes, at the request of the processes, within
the bounds of the system security policy. Named FIFOs support multiple readers and multiple writer; locks
are used to serialize access. DAC is enforced through the same mechanisms used for files.

Named FIFOs are created using the TSS re te_f fo gate. They are removed using the deleteo e t
and remo el n TSS gates.

102
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300

. nt od ction

The most important services provided by a Trusted Computer Base (TCB) are its protection mechanisms.
These mechanisms serve to enforce the system policy, provide separation of address spaces, provide protection
of trusted code, and provide accountability for actions taken by subjects; they are implemented using a
combination of hardware and software. The hardware mechanisms have already been discussed; the software
mechanisms concentrate on the enforcement of policy and accountability.

STOP 4.1 uses a hybrid security policy model that combines the Bell and LaPadula model 4 for sensitivity
and the strict Biba model 5 for integrity into a model wherein the conditions of both models must be met
for access to be granted. One benefit of this approach is that it allows STOP 4.1 to easily support least
privilege through the controlled use of integrity levels. This is discussed in more detail on Section 6.2.1.1,

page 106.

The following sections explore each of the mechanisms provided by software. The discussion will begin
with a look at the mechanisms that enforce the mandatory and discretionary policies of the system. This
will be followed by a discussion of the secondary mechanisms provided (subtypes, capabilities), as well as
a discussion of the privilege mechanism. The focus then turns to accountability, with a discussion on the
identification and authentication mechanism of STOP 4.1, followed by a discussion on the special set user
ID protection mechanism and the audit facilities. The last mechanism discussed will be object reuse.

. olicy noc m nt c anisms

The primary protection mechanisms in STOP 4.1 are those that enforce the mandatory and discretionary
access control policies. This section begins with a general discussion of the Mandatory Access Control
(MACQ) policy of STOP 4.1, and how it is enforced. This is followed by a corresponding discussion for the
Discretionary Access Control (DAC) policy. After that, the specific mechanisms used for each of the STOP
4.1 objects are presented, including discussions on: where policy is enforced for that object in the system,
how a user can change the attributes of the object, and what happens as a result of changes to the attributes
of the object. An overall picture of the access checks performed by STOP 4.1 may be found in Figure 6.1
and Figure 6.2, which illustrate the interaction of the MAC, DAC, and supporting policies.

103
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300

CHAPTER 6. TCB PROTECTION MECHANISMS

! “read” yes

“execute”
access?

no

MAC
CHECKS

SIMPLE
SECURITY
EXEMPT?

y%|

no

Subj. SL
dominates
Obj. SL?

SIMPLE
INTEGRITY
EXEMPT?

Subj. IL no

dom-by
Obj. IL?

) es
“write” y
access?

no|

SECURITY
*PROPERTY
EXEMPT?

Obj. SL no
dominates

Subj. SL?

INTEGRITY
*PROPERTY
EXEMPT

Yes

Obj. IL no
dom-by

Subj. IL?

Subject

g

SUBTYPE
CHECKS |
|

|

Does Subj.

no

possess Obj.
Subtype?

(CONﬂNUEVWTHACCESSCHECKS)

(_ ACCESS DENIED)

Figure 6.1. Hardware and Kernel Access Checks

FI AL: July 11, 1995

104

(CONTINUE WITH ACCESS CHECKS)
v

Subject

Get user and
group IDs

Final Evaluation Report Wang XTS-300

6.2. POLICY ENFORCEMENT MECHANISMS

Get perms from
“other” entr

Get first
specific ACL
entry

¢

DAC
CHECKS

Caller's
group

Does grp
match and
no previous
grp match?

Get next specific
specific ACL

Get perms from
“owner” ent

Get perms from .
current ACL ent

yes

Get perms from
current ACL entr

et perms from

equal to
obj’s grp?

no

“group” field

Do
perms allow

| requested
yes access?

(_ ACCESS ALLOWED)

(_ACCESS DENIED)

Figure 6.2. TCB System Services (TSS) Access Checks

105

FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

The MAC policy grants access based on labels assigned to subjects and objects. In order for access to be
granted under the MAC policy, the label on the object must satisfy a specific relationship, determined by
the type of access needed, to the label of the subject requesting access.

2. . AC a es

All subjects have associated with them a MAC label that represents the current sensitivity and integrity
labels of the subject. The clearance of the user associated with the subject must always dominate the current
MAC label of the subject. This restriction is enforced by the kernel. Furthermore, all objects unambiguously
have associated with them a label that reflects the sensitivity and integrity of the information in the object.

MAC labels contain the following information:

Sensitivity label:

Sensitivity level (16 hierarchical)

Sensitivity categories (64 nonhierarchical)
Integrity label:

Integrity level (8 hierarchical). STOP 4.1 has predefined meanings for the integrity levels, as
follows:

3 User Integrity

4 Operating System Services (OSS) Integrity (i.e., reserved for OSS untrusted applica-
tions).

Operator Integrity

7 Administrator Integrity

Integrity categories (16 nonhierarchical)

Given two labels (levels and categories), the first is considered to “dominate” the second if the hierarchical
level of the first is greater than or equal to that of the second, and if the category set of the first is a superset
of the second.!

MAC labels are stored internally in the following format:

Sensitivity Level An 8-bit byte, constrained to values 0 through 15.
Sensitivity Categories 64 bits, where setting a bit indicates possession of a particular category.
Integrity Level An 8-bit byte, constrained to values 0 through 7.
Integrity Categories 16 bits, where setting a bit indicates possession of a particular category.
1 his m aris nrueh ds r th sensitivit and integrit a es the duait integrit is hand ed s a ing the
rder m aris n e t d minatessu e t as sedt su e td minates et.
106

FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
6.2. POLICY ENFORCEMENT MECHANISMS

2. .2 ol ues

The MAC policy enforced using these labels is a combination of the policies defined by the Bell and LaPadula
model 4 and the strict Biba model 5. This policy uses the following access rules:

Simple Security Policy

A subject may access an object for reading if the sensitivity label in the current MAC label of the
subject dominates the sensitivity label of the object.

Simple Integrity Policy

A subject may access an object for reading if the integrity label of the object dominates the integrity
label in the current MAC label of the subject.

Security -Policy

A subject may access an object for writing if the sensitivity label of the object dominates the sensitivity
label in the current MAC label of the subject.

Integrity -Policy

A subject may access an object for writing if the integrity label in the current MAC label of the subject
dominates the integrity label of the object.

Since the policy used is a combined policy, both the simple security and integrity policies must be satisfied
to access an object for reading. Similarly, to access an object for writing, both the security and integrity

-policies must be satisfied. Control of creation and deletion of hierarchically structured objects, such as
those in the file system, are based upon the ability to write the directory containing the object.

An earlier version of the Bell and LaPadula model than 4 also required that the level of the object should not
change (“the Tranquillity Principle”). 4 proves that it is possible to change the level of an object without
violation of the policy rules just described. This requires accesses by a subject to an object be checked
and possibly revoked when an object level changes. XTS-300 allows object levels to change (consistent with
policy), revalidating access whenever this happens.

In contrast to the MAC policy, the DAC policy grants access based on a relationship between a named user
and a named object. All subjects have associated with them (in the Active Process Table Entry (APTE)
for the process) the identity of the user and group on whose behalf the subject operates. This association is
established at the time of process initiation, and can be changed only by the TCB.

In a manner similar to UNIX, STOP 4.1 supports the concept of real and effective user identification. Access
checks are done based on the current effective user and group identification. This identification may be
changed as described in Section 4.6.1, page 62. The real user and group IDs are retained, independent of
changes to the effective user, for auditing purposes. A separate gate, usable for this purpose only by trusted
code, must be used to change the real user/group IDs.

107
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

The potential access allowed? to a subject, operating on behalf of a named user/group, is specified by the
Access Control List (ACL). In the STOP 4.1 system, ACLs are stored along with the object subtype. (see
Section 6.3.2, page 114) information. Each ACL contains the following information:

Owning User ID of the object, and the allowed access modes of that user. For a process, this user ID
is interpreted as the effective user ID.

Owning Group ID of the object, and the allowed access modes of that group. For a process, this group
ID is interpreted as the effective group ID.

A list of up to seven (see Section 9.7, page 158) other users or groups , and their allowed access modes.

Allowed access modes for any other user or group that has not already been covered.

When an object is accessed, the ACL for the object is examined to find the first entry that matches the
effective user or group of the subject that issued the access request. This search is equivalent to the following.
The specific algorithm used in STOP 4.1 is shown in Figure 6.2 (page 105).

1. The owning user is compared with the effective user. If they match, the permissions for the owning
user are used.

2. If the owning user does not match the effective user, the ACL is examined to determine if there are
any ACL entries that match the effective user requesting access. If an entry is found that matches (the
first one found is used), the permissions associated with that ACL entry are used.

3. If no match is found for the effective user in the ACL, the owning group is then compared against the
effective group. If this comparison is successful, the permissions for the owning group are used.

4. If the owning group does not match the effective group, the ACL is examined to find the first entry (if
any) that matches the effective group. If such an entry is found, the permissions associated with that
entry are used.

5. If no match is found for the effective group in the ACL, the “others” permissions are used.
Once a match is found, the permissions are examined to determine if the requested mode of access is one of
the allowed access modes for that subject.

There are three allowed access mode bits in each ACL entry; any combination is syntactically valid (although
it may have no semantic meaning). These bits are:

If this bit is set, the user or group is allowed read access to the object (if allowed by the
MAC policy).

If this bit is set, the user or group is allowed write access to the object (if allowed by the
MAC policy).

2 he term tentia is used e ause the desnts ei the urrenta ess n thea a ea ess. he tentia
a ess e mesana tua m de a ess henthesu et ensthe etina arti uara essm de.
it is used t indi ate hether the given I reerst agru I rawuserl .

108
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
6.2. POLICY ENFORCEMENT MECHANISMS

If this bit is set, the user or group is allowed “execute” access to the object (if read access
is allowed by the MAC policy). This bit may be ignored or be meaningless for certain
types of objects (for example: devices, named First-In First-Out (FIFOs) processes). For
directory file system objects, this bit is not interpreted as “execute,” but as “search.”

If the particular bit for that type of access is not set, the corresponding user or group is denied that mode
of access. Hence, to deny access to a given user or group, the bits for all types of access would not be set.

Although the basic policy enforced is the same for all subjects and objects, there are differences in the specific
mechanisms used to provide that enforcement. This section presents these specifics, including, for each type
of object, discussions on: where policy is enforced for the object in the system, how a user can change the
attributes of the object, and what happens as a result of changes to the attributes of the object.

.2.3. e ments

As mentioned earlier, segments are the basic information storage object in STOP 4.1. Every segment has
both a MAC label and an ACL; this information is maintained in the Segment Branch Table Entry (SBTE)
for the segment. For a discussion of how the segment branch table is connected to the segment, see Section
4.4.3, page 41.

When an object is mapped into memory, the MAC label and ACL are examined to determine the types of
access allowed. This determination is encoded into a field in the process-local Known Segment Table (KST).
The requested access modes are also inserted into the appropriate segment descriptor.

MAC enforcement for segments is localized to the Segment Manager layer of the kernel. MAC checks are
done whenever information is obtained or changed about the segment, when the segment is mapped into a
subject’s address space, and when a segment is created or deleted.

When a segment is created through the TCB interface (i.e., using TSS gates), it is always assigned the
current MAC label of the creating subject. This MAC label must fit within the MAC label range of the
filesystem on which the segment is being created.

The point at which DAC policy is enforced differs for permanent and temporary segments. Temporary
segments have their ACLs checked by the Segment Manager layer of TSS. Permanent segments are not
nameable as segments from outside the TCB; instead, the STOP 4.1 TSS provides the file system abstraction
to provide permanent storage. Hence, DAC policy enforcement for permanent segments accessed from outside
the TCB is done at the level of the file system object abstraction (see Section 6.2.3.4, page 112).

When permanent segments are created, the initial discretionary permissions are supplied through the TCB
interface to TSS via the TSS File System abstraction. TSS uses these supplied permissions when calling the
kernel to actually create the segment. When temporary shared segments are created, a similar action occurs:
the TCB interface supplies the initial discretionary permissions for a segment to TSS, which passes those
permissions on to the kernel when creating the segment. Temporary private segments are different; they are

H ever the erne d essu rtthea iit t reate ermanent segments at an a e that satis the se urit and
integrit r erties hen m aredt the urrent a e the su e t.
109

FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

created by the kernel with fixed discretionary permissions that grant the owning user read/write access and
deny all others access.

The STOP 4.1 kernel provides a gate that allows the policy-related attributes of a segment (either MAC
labels or ACLs) to be changed. When this happens, any process having the segment mapped will have its
MAC access rechecked using the new attributes. If the segment is no longer accessible in the requested
mode under the MAC policy, access to the segment will be revoked. If the segment is temporary, DAC
is automatically rechecked by the Segment Manager layer of TSS. If the segment is permanent, DAC is
rechecked by the File System Manager layer of TSS.

There are no commands (as opposed to gates) provided for users with respect to segments. Permanent
segments, however, may have their characteristics manipulated indirectly through the file system using the
fsm command. Temporary segments may be manipulated only via code.

.2.3.2 ro esses

The second type of object in STOP 4.1 is the process. A process is unique in that it is the only system entity
that is both a subject and an object.

All policy-related information for a process is maintained in the APTE for the process; this information
includes the MAC label of the process, and the ACL of the process. The APTE also maintains the following
information about the user on whose behalf the process is executing: the clearance of the user, the effective
user 1D, the effective group ID, the real user ID, and the real group ID.

MAC policy enforcement for process creation is localized to the Process Manager layer of the kernel. MAC
policy enforcement for interprocess communication is localized to the Interprocess Communication (TPC)
Message Manager layer of the kernel.

The DAC policy interacts with processes as a result of the IPC mechanism. When IPC messages are sent,
the target process has its ACL checked by the IPC Message Manager layer of the kernel.

Kernel calls are provided to allow a process to change its policy-relevant attributes. The policy-relevant
information that may be changed includes:

The clearance of the user associated with the process. This can be changed only if the process possesses
the SET_.PROCESS_ATTRIBUTES privilege. Changing the current clearance of a process does not
affect the accessibility of previously opened objects. Note that changing the clearance does not change
the current MAC label of the process.

The real and effective user and group IDs of the process. These can be changed arbitrarily only if the
caller has the SET_OWNER_GROUP privilege; otherwise, the effective user (group) can be set only if
the requested value is equal to the real user (group) or the user (group) saved by the o erl y_te t
gate. These semantics are similar to those of UNIX. If the effective user or group IDs are changed,
the access to any open non-private objects will be rechecked. If the check fails, access to those objects
will be removed. Additionally, the ownership of all temporary private segments in the address space
of the process is transferred to the new owner/group without revalidation.

N te that thereis n inter a et hange the a ess ass iated ith atem rar segment.
u ist thein rmati n maintained in the ma e undin etin .. age and etin .. age

110
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
6.2. POLICY ENFORCEMENT MECHANISMS

The ACL of the process. Changing the ACL of a process will result in revalidation of access to open
segments that are not temporary-private, as well as to all UNMOUNTED devices.

The following supporting policy information can be changed:

The accessible subtypes of the process. Changing a subtype list of a particular category of object
(device, segment, process) will result in revalidation of access to objects in that category currently
mapped by the process.

The effective and maximum privilege sets of the process. To change the maximum privilege set,
the caller must be in the TSS domain or possess the MODIFY_PRIVILEGE privilege. The effective
privilege set may be changed without the caller having any special privilege; however, the effective
privilege set must always be a subset of the maximum privilege set. Untrusted processes have an
empty maximum privilege set; hence, they cannot obtain any privileges.

There is no user interface provided to allow changing of most of this information. However, the sl command,
provided by the Secure Server, allows a user with the SL ALLOWED capability (see Section 6.3.3, page 115) to
change the user’s MAC label maintained by the Secure Server. This label, maintained in an internal Secure
Server variable, 1s used when creating new processes or reattaching to previously created process families.
It reflects the current MAC label associated with the user and is distinct from the current MAC label and
clearance of the Secure Server process itself. When the label is changed, the Secure Server ensures that the
new MAC label is dominated by the clearance (maximum MAC label) of the user. The current clearance of
an untrusted subject may not be changed during the lifetime of that subject.

.2.3.3 el es

The third category of objects in STOP 4.1 is the device. Devices are the means whereby the system can
communicate with the outside world. MAC and DAC enforcement for devices is localized to the Device
Manager layer of the kernel.

Associated with a device are the following MAC labels:

The MAC label of a logical device, which is stored in the Device Branch Table Entry (DBTE). This
reflects the label to be associated with data imported to or exported from the logical device.

The minimum and maximum MAC labels at which a logical device can operate are specified in the
definition of the logical device. The set of logical devices is initially defined at the time of system
generation and may be changed through the use of the config_edit program. This program will allow
the administrator to modify the values of device maximum and minimum access. Most changes made
via config_edit will not take effect until the next boot.

During startup, Kernel Startup looks at the Logical Device Data (LDD) database to determine if an
entry in the device directory has been created for each logical device. If not created, Startup creates
the entry via re tede e.

The minimum and maximum MAC labels of the data that may be contained within a filesystem.
Filesystems are partitions of a disk device. The filesystem range constrains the MAC labels of segments

111
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

that can be stored within the filesystem. The filesystem range must fit within the range of the system
limits.

When a logical disk partition is treated as a single device for operations such as check, fscheck, or mkfsys,
STOP 4.1 verifies that the sensitivity (not integrity) label assigned to the logical device dominates the
filesystem maximum sensitivity label. Subjects executing programs that treat the disk in this fashion
(which must have an integrity level greater than or equal to operator but possess no privileges) are
trusted to preserve the level of the data within the partition. When a partition is subsequently mounted
with the mount command, the logical device must have its level changed to the filesystem minimum.

It should be noted that mounted filesystems are the form of multilevel device supported in STOP
4.1. Tapes are treated in STOP 4.1 as single-level devices; for save and restore operations, it is the
trusted fsave and frestore programs that maintain the MAC labels. The tape itself is treated as a
container labeled at the MAC label of the fsave (which must dominate the upper end of the filesystem
range).

Devices also have ACLs; these are stored with the current device MAC label in the DBTE. These entries are
linked into the Active Device Table (ADT).

When a device is successfully mapped by a subject, information on the device is entered into the process
local Known Device Table (KDT). This table maintains the mode in which the device was opened.

As noted above, devices have a range based on their device type (major) and minor number, and a current
MAC label indicating the current use. When a user logs in, the terminal device has its current MAC label
set to that of the user’s default MAC label. If this cannot be done and the user has the SL ALLOWED
capability, the user i1s prompted for a valid MAC label. Otherwise, the user cannot log in on that terminal.
When a user who has the capability changes the current MAC label for the user maintained by the Secure
Server, the device’s MAC label is changed correspondingly.

For devices other than terminals and system printers, system operators can change the current MAC label
and/or ACL of the device via the sda command. This command allows a user to change the access controls
on a device. Data is entered in the same fashion as in fsm. When the MAC label or ACL of a device is
changed, all processes accessing the device have their access revalidated by the Device Manager layer of the
kernel.

.2.3.4 le stem O e ts

The last category of objects is file system objects. This category actually covers more than one type of object

files, directories, device special files, and named FIFOs all share common structures and enforcement
mechanisms. They differ only in the interfaces used to create the objects, manipulate the objects, and
destroy the objects. Directories have an additional difference that has been previously mentioned they
assign different semantics to the execute bit of the ACL.

As described in Section 4.6.3, page 63, files are an abstraction constructed out of permanent segments. Each
of these segments contains a copy of the MAC label for the file system object; MAC enforcement for the file
system object is done for each segment that makes up the object at the time the segment is mapped into
the process’s memory. DAC information, however, is not replicated. The only ACL that is maintained for a

is devi es hen m unted as a es stem are nsideredt e mutieve devi es. hen the dis devi e is m unted it
eases t have a urrent a e.

112
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
6.3. ADDITIONAL SUPPORTING PROTECTION MECHANISMS

file system object is the one associated with the control segment for the object. This ACL is checked by the
File System Services layer of TSS.

It should be noted that Device Special Files are a special case. Since the information provided by a device
special file is contained only in the control portion of the file control segment (there is no data in a device
special file), it is considered one of the attributes of the file. As such, no discretionary policy enforcement is
provided; only the MAC on the device special file is enforced. MAC and DAC are enforced, however, on the
subsequent mapping of the device itself.

Since files are just an abstraction of segments, the same mechanisms used to change the attributes of segments
may be used to change the attributes of the segments that make up a file system object. This interface is
simplified by TSS, which provides gates that allow the changing of the MAC label, owners, and ACL of a
file system object.

The Secure Server provides a user with the fsm command to change file attributes. This command allows a
user to change, for any of the user’s files, the following information:

The MAC label. Depending on the direction of change, an appropriate capability (DOWNGRADE
ALLOWED or UPGRADE ALLOWED) is required. Additionally, when a file is downgraded, the sys-
tem requires the user to view the contents of the file to ensure the downgrade is appropriate (unless
specifically exempted by the system administrator).

The ACL of a file. The interface allows a user to change portions of the list (owner’s access, owning
group’s access, specific user’s/group’s access, other’s access). To change a portion of the ACL, the
entire ACL must be reentered (e.g., modifications cannot be made based on existing data).

When this information is changed, access to the file is revalidated for all processes at the next time the
process attempts to access a segment that makes up the file. Note that a user running at the administrator
integrity level can change the attributes of any file.

The Secure Server also provides the means for printing files. This can be done through the fsm command.
Banner pages are always printed giving the sensitivity label associated with the file system object. This
sensitivity label contains the human-readable names associated with the internal label through the Security
Map database, maintained by the administrator using the sm_edit command. The banner page also contains
the user’s name, the date, and a sequence number. By default, the sensitivity label is also printed out at the
top and bottom of each page. A user (with the UNMARKED PRINT ALLOWED capability) can turn off the
labeling of the pages within the printout, but cannot suppress the banners. There are no mechanisms that
allow a user to change the sensitivity label of a printout to something other than that assigned to the file.

. Additional S ppo tin ot ction Cc anisms

In addition to the TCB mechanisms that provide enforcement of the MAC and DAC policies, STOP 4.1
provides four additional protection mechanisms that are not directly policy related. These mechanisms

he d esn tre uirethe rinting the integrit rtin the a e n thee 1t human reada e sensitivit
a es isre uired.
Is ing is d ne means ther than the sensitivit a e used is that the r ess. hisis e ause the r ess
an n rite the s e int thes ing dire t r at the r esss a e regardess the es ae .
an s the eatthe es a e e auseit erates ith riviege.
113

FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

provide additional TCB protection, support of least privilege, and a controlled means of bypassing security
policy.

This is a hardware mechanism used to restrict access to segments in memory, thus providing TCB self-
protection. This is described in more detail in Section 3.4.3.5, page 22.

Another supporting TCB protection mechanism is the subtype mechanism. Subtypes are like tokens in a
capability-based system; to access an object, a subject must possess the object subtype for the object.

This mechanism 1s used by the kernel to restrict access to objects. The system supports subtypes for
processes, segments, and devices. The primary use of subtypes is to provide control over the trusted path
when the Secure Attention Key (SAK) is pressed, the Server changes the subtype of the terminal to prevent
any untrusted processes from accessing it. Other uses of subtypes in the system are as follows:

The trusted program fsm uses segment subtypes to provide exclusive file access. When fsm starts, it
changes the subtype of all the segments that support the object to a reserved value; thus, any untrusted
processes having the object opened will lose access. This use of subtypes also provides an interlock for
multiple fsms operating on the same file system object. At the completion of fsm, the original subtype
is restored.

Subtypes are used to protect trusted databases. Only trusted programs are given the appropriate
subtypes necessary to access the databases.

Subtypes are stored with the ACLs and are part of SBTE, DBTE, and the APTE. Internally, subtypes are
stored as 16-bit words. The value of zero is the default all subjects have access to objects with a subtype
of zero. Each subject has an accessible subtype list consisting of up to five subtypes for each object type
(segments, devices, and processes). Only the default subtype is used for process objects.

For devices, terminals are assigned a subtype consisting of the index into the terminal configuration data
base plus the value of the process family currently attached to the terminal. Each process family is given
only the appropriate subtype. With this mechanism, it is assured that only one process family can access
the terminal; the terminal subtype is set based on the reattach command. When the trusted path is invoked,
the process family portion of the subtype is set to zero, which assures that only trusted software can access
the terminal.

For segments (files), only two additional subtypes are used: and -
- . The audit subtype is used to restrict access to audit data (both the audit files and the

controlling audit database) to trusted software.! The trusted data subtype is used to restrict access to

various trusted databases such as the user access database containing passwords to trusted software.

1 th ugh the audit es are r te ted the audit su t e an e used t mani u ate audit es administrat rs
running at ma imum sensitivit and ma imum integrit . ith audit es an edis a ed renamed and de eted wutn t

ied.

114
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
6.3. ADDITIONAL SUPPORTING PROTECTION MECHANISMS

Subtypes are checked by the kernel on every operation on the object. They are initially checked when the
particular object is first introduced into the subject’s address space (i.e., at the time of mapping) or when
the object is accessed (if mapping is not required). When an object subtype is changed, the descriptor is
invalidated, which forces the subtype to be rechecked. When the subtype list for a process is changed for a
particular category of subtype, all access for that category is rechecked. Accesses where the subtype has not
changed can be viewed as having the subtype checked implicitly, because revalidation of the subtype does
not occur.

Checking of subtypes is done by comparing the appropriate subject’s subtype list (contained in the APTE)
to the subtype of the object. In order for the subject to have any form of access to the object, the subtype
of the object must be on the subtype list. The ability to add subtypes to the subtype list of a subject is
controlled by the privilege mechanism.

The third supporting TCB protection mechanism is the capability mechanism, which provides a way for the
system to restrict the ability of users to use commands, thus enforcing a secondary layer of least privilege on
top of that provided by the hierarchical integrity level. Capabilities are a mechanism whereby the commands
and possible actions available to a user from the Secure Server and other trusted software can be restricted.

It should be noted that support for the capability mechanism is localized to the Secure Server and the trusted
programs called by the Secure Server. Auditing of the use of capabilities is not done directly; it is indirect
through the auditing of the actions taken by the trusted programs.

Capabilities are defined for a user by the administrator through the ua_edit program. The system understands
the following capabilities:

DOWNGRADE ALLOWED This capability gives a user the ability to set the MAC label of a file

system object to a lower value.

UPGRADE ALLOWED This capability gives a user the ability to set the MAC label of a file

system object to a higher value.

The two capabilities mentioned above (DOWNGRADE ALLOWED and
UPGRADE ALLOWED) are used by fsm, which is a trusted program.
Fsm raises the SIMPLE_SECURITY_EXEMPT privilege when modi-
fying the attributes of a file; it controls the ability to upgrade or down-
grade the MAC label of a file through the use of the DOWNGRADE
ALLOWED and UPGRADE ALLOWED capabilities. In addition to the
capabilities, the user issuing the request must be the owner of the
file system object (unless the user’s integrity level is administrator or
higher) and must have a current MAC label equal to the MAC label
of the file system object. Note how this differs from the checks made
when copying files, which is a service provided by the untrusted (and

unprivileged) CASS.

VIEWING OPTIONAL This capability gives a user the ability to bypass viewing the contents
of a file when downgrading it.

115
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

CUP ALLOWED This capability gives a user the ability to use the cup program to
change the user’s password (or another’s password, if the user has an
integrity level of administrator or greater).

DISCONNECT ALLOWED This capability gives a user the ability to disconnect process families
from the current session and let the process families operate in the
background. It also controls the ability to run after logout.

KILL ALLOWED This capability gives a user the ability to use the kill or ikill commands
to send a kill signal to processes associated with the current session.

RUN ALLOWED This capability gives a user the ability to use the run command to
invoke the user’s default program. It also controls the ability to use
the chd and ccp commands.

SG ALLOWED This capability gives a user the ability to use the sg command to
change the user’s current group.

SL ALLOWED This capability gives a user the ability to use the sl command to
change the label of the current session. It also controls the ability of
a user to change the user’s default label (edl command).

SHUTDOWN ALLOWED This capability gives a user the ability to use the shutdown command
to bring the system to an orderly halt. It also controls the ability to
generate a system dump via the dump command.

UNMARKED PRINT ALLOWED This capability gives a user the ability to generate printouts that do
not have sensitivity labels at the top and bottom of each page. This
capability does not suppress the labeling of the banner pages.

MULTIPLE LOGIN ALLOWED This capability gives a user the ability to be simultaneously logged in

on multiple terminals.

Capabilities are checked by Trusted Software.

The last supporting TCB protection mechanism does not actually provide protection; rather, it provides
a controlled mechanism whereby a process operating on behalf of a user can be authorized to bypass the
system security policy in a selected fashion. This is done by associating with each form of policy bypass a
specific privilege that must be possessed by the process to exploit the bypass.

Every executable file in the file system has associated with it a maximum privilege set that represents
the maximum set of privileges that an instance of that program may have at any point in its lifetime. This
maximum privilege set may not be changed by untrusted users; a user with an integrity level of administrator
must use the tp_edit program (see Section 4.7.3.3.10, page 92) to change it. Thus, only trusted programs
have privilege.

Every active process on the system has associated with it (in the APTE) both a maximum privilege set and
an effective privilege set. When a process is loaded, the integrity level of the program file is examined. If it

116
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
6.3. ADDITIONAL SUPPORTING PROTECTION MECHANISMS

is a trusted program with an integrity level of operator or above, the maximum privilege is obtained from
the control segment of the executable file as described above. If it is not a trusted program, the maximum
privilege set is set to the empty set, unless the invoking process possesses the TRUSTED_PARENT_EXEMPT
privilege. The effective privilege set for all processes starts out empty. As a program executes, it may use
the kernel gate set_pro ess_st tus, through the set pr 1le e function, to change its effective privilege
set; however, this set must always be a subset of the maximum privilege set.

A process may also change its maximum privilege set dynamically through the set_pro ess_st tus gate.
To do this, however, it must currently possess the MODIFY_PRIVILEGE privilege. The trusted program
editor, tp_edit, does not allow the administrator to assign this privilege to any trusted program; thus, it can
be present only on programs configured in by the vendor.

The following privileges are understood on the STOP 4.1 system:

MODIFY_PRIVILEGE. Allows a process to modify its maximum privilege set.

SET_LEVEL Allows a process to change the MAC label of an object.

UPGRADE_LEVEL Allows a process to upgrade the MAC label on an object.
SET_DISCRETIONARY_ACCESS Allows a process to change the access control list of an object if it

is not the owner of the object.

SET_-OWNER_GROUP Allows a process to change the access control list of an object, the other mode
bits (i.e., setuid/setgid) of an object, or the owning user/group of the object, even if it is not the owner
of the object.

SET_PROCESS_ATTRIBUTES Allows a process to set its clearance label and process family.
SET_SUBTYPE_ACCESS Allows a process to change the current subtype of an object.

TERMINAL_LOCK Allows a process to retain control of the terminal when a secure attention key is
pressed (see Section 4.7, page 67).

DEVICE_.CONTROL_EXEMPT. Allows a process to perform primitive hardware control functions on
a device (e.g., loading the controller firmware).

SIMPLE_SECURITY_EXEMPT. Allows a process to bypass the simple security property 1i.e., it can
read objects at a sensitivity label that dominates the process’s sensitivity label.

SECURITY_STAR_PROPERTY_EXEMPT. Allows a process to bypass the security -property i.e.,
it can write objects with sensitivity labels dominated by the process’s sensitivity label.

SIMPLE_INTEGRITY_EXEMPT. Allows a process to bypass the simple integrity property 1i.e., it
can read objects at an integrity label dominated by the process’s integrity label.

INTEGRITY_STAR_PROPERTY_EXEMPT. Allows a process to bypass the integrity -property
i.e., it can write objects with integrity labels that dominate the process’s integrity label.

DISCRETIONARY_ACCESS_.EXEMPT. Allows a process to bypass the discretionary access and sub-
type policies.

TRUSTED_PARENT_EXEMPT. Allows a process with an integrity level below operator to load trusted
processes with privileges. When the privilege is present at the time of loading, the privilege bits of
the new process are not zeroed when the creating process is untrusted. It is not currently used by the

STOP 4.1.

117
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

4 d nti cation and A t ntication

STOP 4.1 requires all users to identify and authenticate themselves before they are allowed to access system
resources. Users identify themselves by entering a unique username, and authenticate their identity by
entering a password. The username and password are initially assigned by the site system administrator. A
user is identified as a system administrator by the current MAC label associated with that user. If the label
includes administrator integrity, then that user may execute system administrator commands.

A trusted path is established by pressing the SAK which is the key. The trusted path cannot be
initiated by a program or without the user’s knowledge because the signal must be generated by hardware.

All user actions requiring the protection of a distinct user-to-TCB communication utilize the trusted path.
The trusted path is utilized for login processing, logout, process control, changing passwords, changing
groups, changing home directory, changing access attributes of a file, changing the security level of the
working user level and system devices, displaying session or system status, outputting a file to a printer
or terminal, and mounting or unmounting a file system. It is also used for operator and administrator
commands. The TCB does not initiate any communication to the user via the trusted path.

The TCB does not support trusted path for pseudo-terminals. In addition, unprivileged processes cannot
establish a login pseudo-terminal.

To begin a terminal session, the user presses the SAK to establish a trusted path between the user and the
Secure Server (see Section 4.7.1.3, page 69). If no user is currently logged in at the terminal when the SAK
is struck, the TCB displays the login banner which is maintained in the Trusted Information database. The
user is prompted for a user name and password. User names have a maximum length of 15 characters and
passwords must be at least 6 characters long. The Secure Server encrypts the entered password and compares
it with the user’s encrypted password, which is maintained in the User Access Authentication database, (see
Section 4.7.2.1, page 72). The only user that this database is accessible to is the system administrator via
the ua_edit command. The database is at maximum security and maximum integrity. No distinction is made
in the error message displayed to the user between an invalid user name and an incorrect password.

When a user requests a login, the Secure Server additionally checks that the user is a valid member of
that user’s default group. A list of users who are members of each group is defined in the Group Access
Authentication database. If the user is not assigned a default group, or the user ID is not included in the list
of valid users for the default group, then, if the user has the SET GROUP capability, the user is prompted to
enter an initial group. The Secure Server again verifies that the user is a valid member of the group specified.
If a user does not have the SET GROUP capability, processing is terminated as a failed login.

The Secure Server verifies that the user’s default MAC label is within the maximum security and integrity
levels allowed for that user as specified in the User Access Authentication database. The Secure Server also
verifies that these levels are within the range of allowed levels for the given terminal. If the levels are not
valid either for that user or for that terminal, and if the user has the SET LEVEL capability, the user is

118
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
6.4. IDENTIFICATION AND AUTHENTICATION

prompted to enter a MAC label. This MAC label is again verified by the Secure Server. If the user does not
have the SET LEVEL capability, processing is terminated as a failed login. All failed logins are recorded in
the audit log unless the login event was selected as an event not to be audited.

A user is not notified that the login was successful until after an audit record is created, since striking the
SAK may interrupt processing. Upon successful login, the user is notified of the date and time of the user’s
last successful login, the channel on which the last login occurred, the number of failed login attempts that
were made since the user’s last successful login, and the user’s initial MAC label.

A user must have the MULTIPLE LOGINS capability in order to log in to more than one terminal simulta-
neously. An attempt to log in at more than one terminal when the user does not have this capability causes
the login to fail and causes an audit record to be generated.

There is a password expiration date and a password lifetime date that is associated with all user IDs on the
system. The value for each is stored in the Trusted Information database and applies to all users on the
system. These values are site configurable; however, the default values are 20 weeks for the expiration date
and 26 weeks for the lifetime date.

When the expiration date is reached, the user is informed and must then update the password in order to
log in to the system. Users must have the CUP ALLOWED capability in order to change their passwords.
Otherwise, the system administrator must change a user’s password. If the password is not updated by the
time the password lifetime date is reached, the password is invalid and the user is locked out of the system.
A locked user can log in only after an administrator has changed the user’s password. An exception is made
to allow an administrator to log in at the system console even if the user ID for the system administrator is

locked.

A terminal is locked once a site-specified number of failed login attempts occurs. The default value is five
and is stored in the Trusted Information database. A terminal lock is implemented by the system ignoring
the SAK. Whenever a terminal is locked, an audit record is generated and a message is sent to the system
console. The terminal will remain locked until its lockout interval elapses or until the system administrator
issues a cancel terminal lockout command, ctl, to clear the lock.

A terminal’s lockout interval is obtained from the Terminal Configuration database entry for that particular
terminal (if the value is nonzero) or from the default lockout time in the Trusted Information database
where the default value is 60 seconds. Each terminal may have its own lockout time defined in the Terminal
Configuration database. When a terminal is locked, it is locked to all users.

If a default command processor is specified for the user in the User Access Information database, and the
user’s integrity level is below OSS integrity, the successful completion of the login procedure results in the

119
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

automatic execution of that command processor as an untrusted process. Successful loading of the command
processor program results in a “leaving trusted environment” message on the user’s terminal.

Once the user is logged in, pressing the SAK causes the current process to become detached and a trusted
path to be established by the TCB. The Secure Server displays the current MAC label and family process
id. A prompt for the next command is displayed. At this point, the user can issue Trusted Commands, (see
Section 4.7.3, page 76). The SAK must be pressed for each Trusted Command that is to be issued. The
reattach command is used to reconnect a terminal to a process that was detached by the use of the SAK.
The session is terminated when the logout command is invoked.

The logout command is used to terminate a terminal session. All active processes that are associated with this
terminal session are killed. Any process from which the user has disconnected via the disconnect command
continue to run. The ownership of the terminal is reset to indicate it is not logged-in. An audit record is
generated for the logout event.

. St s ot ction

The UNIX mechanism that permits a process to assume an identity associated with the owner of a program
rather than that associated with the process is the mechanism!!, which affects the operation
of the o erl y_te t gate (see Section 4.6.1, page 62). Although not used by the TCB, this mechanism is
supported by the TCB because of its widespread use in UNIX.

Experience with the mechanism has shown that, if not properly controlled, it can lead to misuse, potentially
resulting in discretionary access protection compromises of or damage to data. In order to reduce the risk of
inadvertent disclosure or damage, Wang has provided some additional protection in the use of the set user
ID mechanism. The following controls are provided on the set fd. ess and set_fs.d ess gates, which
are the only means for designating a program as being a set user ID program:

In order to use either of these gates, the process must have the DISCRETIONARY_ACCESS_EXEMPT
privilege.

If any mode bit permits write access to the file containing the program, any request to set user ID is

denied.
If the owner or group of the file is changed, both set user ID and set group ID flags are cleared.

If the effective group of the process differs from the group of the file, the set group ID flag is cleared.

Additionally, only the trusted fsm command, which possesses the appropriate privilege, may be used to
install a set user ID program.

11 hereis a m ani n me hanism used t ntr the a ed . rsim iit m st the dis ussi nin
this se ti n deas ithset userl the dis ussi ne tendst thegr u sim e su stituti n gr u r user.

120
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
6.6. AUDIT

. A dit

Audit is the facility within STOP 4.1 that is used by the TCB to record security-relevant events that take
place on the system while processes are executing. Audit is performed by a group of routines in the kernel
referred to as Audit Functions, by the kernel Audit Process, and by a trusted file system daemon process.

When a module of the kernel encounters a security-related event that is to be audited, it calls routines in
the audit functions. When either Trusted Software or TCB System Services detects an event to be audited,
it calls the kernel audit function routines through the kernel gate ud t_e ent_ te. These audit function
routines build individual audit records and place them into audit frames. These frames are in global storage
since all processes need to be able to generate audit records. The frames are placed on an audit queue for
the kernel audit process.

The kernel audit process creates audit segments by copying the data from the frames built by the audit
functions. The audit segments are created at the maximum MAC label.

Each audit file contains only one segment and is up to 4 Gbyte in length. Audit records are not allowed to
span segments. The names of the created segments are passed to the trusted file system daemon process via
an [PC message. The File System Daemon process accepts the names of the audit segments and produces
audit files in the / ud t directory. The audit files are protected by a unique file subtype that prevents access
by untrusted software.

If the kernel audit process falls behind in its processing of the audit frames, the auditing function routines
prevent additional processes from entering the kernel. Since the kernel is the only place where auditing
can take place, this slows down the rate at which auditing data can be produced; only those processes that
were already in the kernel can continue to generate audit information. After the audit process has reduced
the backlog, the audit process lifts the block at the kernel gate to allow processes to enter the kernel. The
amount of backlog is maintained by the audit function and audit process routines.

The amount of audit data allowed to accumulate on the system is limited only by available disk space. The
system administrator can set a site-configurable parameter for the number of audit files the system will
create before displaying a warning message. The default value for this threshold is 10.

When this threshold is reached, the system will send a message to the system console to notify the system
administrator that the audit file threshold has been reached. Audit files will continue to be generated; there is
no upper bound on the number of audit files that can be created. The warning message will be redisplayed on
the system console each time a new audit file is created. This gives the system administrator the opportunity
to save the audit files elsewhere or delete them. If no action is taken by the system administrator and audit
files cannot be generated because of disk space limitations, the audit process will initiate a shutdown. At
shutdown, the audit data in the current segment is saved.

The synchronization rate of files to disk is uniform for all files. The frequency of synchronization is determined
by a site-configurable parameter. If a system failure occurs, the audit data that can be lost includes frames
that have not been put into segments and segments that have not been written to disk.

Audit events are generated by Trusted Software, TCB System Services, and the kernel. The following audit
events are generated by Trusted Software:

121
FI AL: July 11, 1995

Final Evaluation Report Wang X'T'S-300
CHAPTER 6. TCB PROTECTION MECHANISMS
Print request issued with no markings
fsm request failed
Trusted editor service performed
Change default level command issued
ctl command issued
cup command issued
Login attempted
logout command issued
sg command issued
sl command issued
st command issued
startup command issued
shutdown command issued
Administrator command issued
Operator command issued
Device start error.
For the administrator command event and the operator command event, the audit record includes the

particular command that was issued. The trusted editor audit event includes the name of the editor that
was invoked, as well as the service that was performed.

TSS generates audit messages for the following security-related events:

Discretionary access denials to file system objects
Opens and closes of file system objects

Creates and deletes of file system objects
Ownership and access changes of file system objects
Installation/removal of set user ID programs
Program loader failures.

Adding and removing links

Mounting and unmounting of file systems

The Security Kernel generates audit messages for the following security-related events:

122
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
6.6. AUDIT
Device/process creation
Device/process deletion
Device map
Device unmap
Disk error
IPC message sent
Process duplication
Unmounting of a busy file system

Any operation that changes the segment/device/process owner, security level, integrity level, or process
privileges/accessible subtypes

The exhaustion of the following resources (for covert channel purposes):

Available processes

Segment space within a file system
Any access attempt denied because of security or integrity violations
Any access attempt denied because of discretionary access violations

Any access attempt denied because of subtype access violations.

Each audit record is composed of a header and a data section. The header contains the following information:

Size of the audit record
Type of event being audited
Time the audit record is generated
Process ID of the process causing the audit event
MAC label of the process
Effective privileges of the process
Real user ID
Real group ID.
The data portion of the audit record contains data pertinent to the particular audit event including, but not

limited to, such things as the device ID, MAC labels including both the new label and the old label in the
case of a change, file system 1D, segment name, and privilege set.

123
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

The param_edit command allows preselection of auditing by event and by user by updating an event list and
user list in the Audit Information database. In addition, the auditing mechanism is implemented such that
a minimum MAC label may be specified below which audit messages are not generated for object creation,
deletion, and access. This MAC label value is also stored in the Audit Information database. This database
is protected using file subtypes where access is limited to param_edit and the kernel.

The kernel determines whether to generate an audit record based on the state of the event list (that event
is enabled) and the state of the user list (the user ID/real process user ID, is enabled). The Secure Server
forces login and logout to be audited independently of the state of the user list.

The Trusted Software audit command formats the raw audit data to allow management of the audit files.
The audit command accepts one of five commands:

switch switch the current audit files in order to accumulate audit data in a new file
remove remove audit files
files list the existing audit files on the system by name, creation time, and file size

display display the existing audit data

e it exit the audit command

The display command is used to view the audit data through the use of the following subcommands:

print displays the selected audit files on the terminal or on a specified printer
select selects audit records from the specified audit files according to the criteria specified in this
subcommand.

The valid selection criteria are audit event type, start date and time, stop date and time, process id, user
name, group name, user number, group number, device ID, segment ID, trusted editor command name,
trusted editor request, file name, object level, and audit records generated for a specified range of MAC

labels.

show displays the current selection criteria
quit exit the display function.
The audit command is restricted to users whose integrity level is at least Operator and whose security level

is at system maximum. Additionally, to display or delete audit information, the user must be of at least the
Administrator integrity level and at the system maximum security level.

124
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
6.7. OBJECT REUSE

STOP 4.1 monitors as imminent security violations the accumulation of repeated failures of login attempts.
For failed login attempts, an audit record is generated for each attempt. After repeated failed login attempts,
a message is sent to the system console and the terminal is locked out (see Section 6.4.4, page 119).

. ct S

Objects examined under the XTS-300 include the following: segment-based objects, directory entries, and
hardware objects. Segment-based objects include segments, processes, files, directories, device special files
and named FIFOs. Directory entries contain the file name and the associated segment unique ID (uid).
Hardware objects include Central Processing Unit (CPU) registers, controller boards or user devices.

Segment growth occurs only at segment creation time in units of pages. The Segment Manager makes
sure that a segment whose pages will not be filled with information from disk storage will be cleared upon
allocation by the Memory Manager retr e ep e routine. All segment-based objects are created or grown
through calls to common routines in the Segment Manager and Memory Manager. When a segment shrinks,
the TCB clears residual data in partial pages.

All entries into the TSS are cleared when allocated to a new process. Furthermore, the TSS is always
initialized to a known state during the load of the system. From that point on, hardware interrupt handling
will save and restore registers properly.

All access to I/O registers is limited to the kernel. There is no access outside the kernel to any I/O registers.
The software drivers only support the ability to return the value of the status registers. A user cannot modify
the status register in any way. A user can examine the value of a status register. In essence, the user cannot
place any arbitrary value in the status registers.

There are six classes of devices available to users via the TSS I/O interface. These include terminals, disks
or diskettes, line printers, magnetic tapes, and networks. The Small Computer Systems Interface (SCSI)
controller which supports both disk and tape is included in this discussion. Each of these will be examined
from the point of object reuse.

Disks The contents of the 16-bit status register is set to a specific value by the hardware
when the disk is opened by a user. This is accomplished by issuing a SEEK to
cylinder 0 to the disk drive.

125
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

Tapes Upon powerup, the drive performs a series of self-tests. An early failure will
result in the drive disconnecting itself from the SCSI bus while a later failure will
result in an error being returned to the Host Adaptor. Registers and internal
memory (data buffer) are initialized and the drive is placed in a known state.

The tape is repositioned when the tape drive is opened by a user. The contents
of the 32-bit status register is reset to a specific value by the hardware.

Printers The contents of the 32-bit status register is set to a specific value by the hardware
when the printer is opened by a user. This is accomplished by issuing a FORM
FEED to the printer.

Networks Upon powerup, the bus interface of the Ethernet adaptor accesses an external
EEROM to set up its initial configuration correctly. Both the memory-mapped
addresses and the control registers that are mapped into the XTS-3001/0 address
space are inaccessible outside of the kernel.

Normal /0O is accomplished through command blocks which includes status in-
formation. All command blocks are flushed (zeroed) during an unmap of the
device.

Terminals The user ensures that internal and external storage of a terminal is cleared be-
tween sessions.

When a file is deleted under XTS-300, both the segment uid of the control segment for the file and the name
of the file is deleted, leaving no residual information in the directory (this is a variation from standard UNIX
behavior).

XTS-300 does not support electronic labels on removable media, such as tapes and diskettes. Object reuse
on removable media is accomplished by a combination of electronic and procedural controls. The procedures
for handling cartridge tapes are described in the Trusted Facility Manual (TFM). The following is a sum-
marization of the procedure for cartridge tapes. The same procedures can be applied to diskettes and to
cartridge tapes.

T Tapes

A request is made for a tape drive to the operator by the user via a telephone call or some other means of
communication external to the system. The user provides the operator with a user ID and a desired MAC
level for the device. After checking whether there is a cartridge tape already mounted on the drive, the
operator issues the set_device_access sda command. Using the sda command, the operator will set the level
of the device to that specified by the user and will also set the ACL of the device such that the requesting
user has exclusive access to the drive.

126
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
6.7. OBJECT REUSE

Once the operator has completed the setup, the user issues a programmatic mount t peor.d s request,
that includes the user’s ID, the MAC level of the requesting process, the volume (cartridge tape) name (if
any), and the mode of access desired, read and/or write. The TCB than validates access based on the level
of the requesting program and the level of the device. If access is granted, a mount request will appear on
the system console.

If no volume name is provided, the TCB requests the operator to mount a scratch tape. In the case in which
a specific volume (cartridge tape) is requested, the TFM recommends that the operator again issue the sda
command to set the MAC level and DAC ACLs for the tape drive to that specified on the external label of
the cartridge tape. The tape is then placed on the drive by the operator. The TCB will revalidate access to
the device after the operator responds to the mount message.

If any cartridge tape is currently mounted and ready to use, and a request to mount a specific volume is
made, the TCB will dismount the current cartridge tape. The operator must then use the sda command to
set the security attributes of the tape drive based on the external label of the requested cartridge tape as
described above.

It is not necessary for a user program to unload a tape upon program termination. A tape may be left
loaded for subsequent use by other programs. The TCB will validate access to the tape for each subsequent
request so no security compromise is possible. If a tape is already loaded in the drive and a scratch tape
is requested, the operation of the user’s program will resume immediately. If the user’s program provides a
volume name and there is a tape already loaded in the tape drive, the tape on the drive will be unloaded.
The TFM states that the operator should set the access attributes of the drive based on the external tape
label associated with the new tape request. Removable media may be declassified only after undergoing a
site-approved degaussing procedure.

7.2 1s ettes

Diskettes may be used in two ways: as user-owned media or as system media. In the case of use as a system
diskette, diskettes are treated as are system disks. Access to system diskettes is controlled through the sdc,
mount, and unmount Trusted Software commands. If diskettes are treated as user-owned media, they follow
the same procedures as for cartridge tape handling.

Diskettes may be used as a boot media under XT'S-300 but only by someone who has access to the system
console. In addition, a boot device must be set to KERNEL class by the sdc command.

127
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 6. TCB PROTECTION MECHANISMS

T is pa e intentiona et an

128
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300

. C ay in

Layering principles are evident on two levels in XTS-300. One is on a domain level. Starting with the Kernel
domain, the domain of greatest privilege, the ability to control access to Trusted Computing Base (TCB)
objects diminishes from the Kernel domain (Ring 0) to the TCB System Services (TSS) domain (Ring 1) to
the Operating System Services (OSS) domain (Ring 2) to the User domain (Ring 3). In addition, there is
layering within the Kernel domain and the TSS domain.

The Kernel domain is the primary area of security policy enforcement. The kernel enforces Mandatory
Access Control (MAC) policy, performs as a reference monitor on all TCB objects such as segments and
devices, performs physical I/O on all devices, performs auditing on a segment level, and performs Ring 0
initialization including creating a process execution environment for kernel and TSS processes. The TSS
domain provides the file system hierarchy (i.e., the kernel is only aware of a flat file system made up of
segments), enforces Discretionary Access Control (DAC) policy, and provides high-level services for user
I/O. In a TCB process, the Trusted Software running in the Operating System Services domain provides the
user interface (i.e., trusted path), manages process family relationships, performs all system initialization
with the exception of Ring 0 initialization, manages all the TCB databases including user profile information,
and enables privileges for software which performs security-relevant functions.

Within the kernel and TSS there is an internal layered structure. Functions at higher levels generally rely on
services provided by lower-level functions. Those functions at lower levels generally rely on less functionality
to execute.

Layering violations within the kernel were permitted in cases of detection of unrecoverable errors or during
interrupt processing. There are three additional occurrences of kernel layering violations that the team
analyzed that do not pertain to error or interrupt processing. It appears that no data abstraction principles
have been compromised within the layering violations. In addition, it appears that none of them lead to any
recursive calls.

. Co t C ann | Analysis

The vendor has analyzed XTS-300 running the STOP 4.1 system for sources of covert channels 23 . The
methodology for determining the shared resources is described below.

129
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 7. ASSURANCES

The vendor’s analysis of the shared resources was conducted by a thorough review of all resources. In order
to bound this analysis, the vendor excluded those TCB components that do not provide a program interface.
The only sources of shared resources that can be used as covert channels are the security kernel and trusted
processes exempt from the mandatory security policy. The security kernel is the primary source of covert
channels since the kernel does not enforce policy on itself when it accesses internal resources; it is exempt
from policy. Similarly, trusted processes, which are exempt from the mandatory security policy and can be
invoked by untrusted software, may also be a source of covert channels since they, like the kernel, are exempt
from policy. Trusted processes that can be invoked only directly by a user (not by a program) cannot be
used as a source of covert channels. Any “object sharing” within the non-kernel domains of an unprivileged
process cannot be used as a source for covert channels because all access is mediated by the kernel; all such
object accesses comply with the system’s mandatory security policy.

The guidelines described above were used to determine the following five basic categories of shared resources:

1. Global variables that exist within the kernel upon the completion of startup

2. Global variables that are dynamically allocated and deallocated by the kernel during execution
3. Process-local variables that are accessed by the kernel on behalf of another process

4. Variables that are accessed by TCB daemon processes exempt from mandatory policy

5. All hardware components.

The first three categories are data variables under control of the kernel. The vendor created lists of these
global resources by reviewing the kernel design document and checking against the kernel source code. The
fourth category, those resources that are accessed by the TCB daemon processes, was compiled from the
Trusted Software and TSS design documents. The last category includes all hardware components because
all hardware is sharable.

A second phase of analysis was then conducted which consisted of examining each resource obtained in the
above process to see if it could be used in any manner such that one process could modify it, and another
process could examine it, even if either modification or examination required indirect intervening steps. The
resources that resulted were then analyzed to determine if there were any constraints on their use (such
as restriction of modification or examination to privileged processes), causing them to be eliminated from
further consideration.

The remaining resources were then examined individually, and a covert channel exploitation scenario con-
structed for each one. The scenario was then used as a basis for calculating the maximum rate at which the
channel could be employed. The results of this analysis are contained in the report 23 .

STOP 4.1 employs two covert channel capacity limitation techniques: time delay and the introduction of
noise.

130
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
7.3. DESIGN SPECIFICATION AND VERIFICATION

7.2.2. esour e austion e a

The resource exhaustion delay is used to reduce covert storage channel capacity without eliminating any user
capabilities. The delay is imposed only when a resource exhaustion error occurs. The resource exhaustion
delay is a site-set time interval (the default is two seconds) that puts processes to sleep for a set amount of
time when a resource exhaustion condition is encountered. The param_edit command is used to change the
default value. Processes that use branch blocks, data blocks, memory tables, or large page tables trigger the
delay when system resources are exhausted. The use of the delay generates an auditable event.

7.2.2.2 ntrodu tion o Co ert C anne oise

The ability of one process to determine the behavior of another based on consecutive values of unique
identifiers (uid) is a known channel in trusted systems. On X'TS-300, this channel is controlled by randomizing
uids, effectively introducing noise into the process.

Two uid generation algorithms are used to name the fundamental TCB objects devices, processes, and
segments. One algorithm is used for both devices and segments, and the other for processes. Since devices
may be created and removed only by trusted software, a potential channel exists only for segments and
processes.

The randomization of process uids is uniformly distributed across the entire range of such uids. For segment
uids, however, Wang chose a technique that limits the rate at which the channel operates.

. si n Sp ci cation and i cation

The vendor used the Bell and LaPadula model 4 with the Biba model 5 as the abstract model and
its Multics Interpretation 4 as the concrete model. The Biba model was incorporated into the Bell and
LaPadula model through a modification of the definition of the dominates relation.

The system allows four access modes: read, write, execute, and search. The read and execute modes map to
the read mode in the Bell and LaPadula model. The search mode is a restricted form of read mode in the
Bell and LaPadula model. It only applies to the discretionary access control decisions; for the mandatory
access control, read access is required. The write mode maps to the append mode in the Bell and LaPadula
model.

The system state has four components: current access set, access permission matrix, level functions,
and object hierarchy.

The current access set consists of the tuples (subject, object, access mode).
The access permission matrix contains access modes allowed to each subject for each object.

Three level functions provide subject maximum clearance level, current subject MAC label, and current

object MAC label.

The object hierarchy ensures that the MAC label of an object dominates the MAC label of the object’s
parent.

131
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 7. ASSURANCES

The model has three axioms (policies). The first policy is called the simple security policy and it ensures
that a subject can only read the objects whose MAC label is dominated by the maximum clearance of the
subject. The second policy is called the security star property and it ensures that a subject can read an
object only if the subject’s current MAC label dominates the object’s MAC label. This policy further ensures
that a subject can only write to an object if the MAC label of the object dominates the current MAC label
of the subject. The third policy is the discretionary security policy, which ensures that a subject can only
access an object in the access modes explicitly granted to the subject for that object.

The model uses 11 rules of operation. Of the rules, five manipulate the current access set; they are: get
read access, get append access, get execute access, get write access, and release read/append/execute/write
access. Two rules manipulate the access permission matrix: give read/append/execute/write access, and
rescind read/append/execute/write access. Two manipulate the level functions. These rules are: change
subject current MAC label, and change object MAC label. Two others manipulate the object hierarchy:
create object, and delete object.

The vendor has identified 34 state-transforming TCB interface operations. For each of these 34 operations,
the vendor provided the following in the English language: interface description, security checks from the
MAC and DAC viewpoints, state-transformation rules, and restrictions in terms of constraints in addition
to the MAC and DAC checks (e.g., required capabilities to successfully invoke the operation). The rules
are translated into a sequence of the rules based on the 11 Multics Interpretation rules. Some of the
rules are described as the variants to the original 11 rules for one of the following reasons: some objects
(e.g., temporary segments) are not members of the object (file) hierarchy, or changes to the access control
matrix are made without altering current accesses. Several TCB interfaces are not modelled because they
are state-preserving for one of the following reasons: obtaining object attributes, setting unmodelled (not
security-relevant) attributes of objects (MAC and DAC policies are still enforced on the objects), internal
TCB implementation functions, and object-referencing (I/O) functions.

The vendor has provided a Descriptive Top-Level Specification (DTLS) 19 that describes the TCB interface
operations through the kernel gates, the TSS gates, and the trusted commands. In combination with the
Trusted Programmer’s Reference Manual 35 and User’s Manual 36 , each interface description includes the
following: function of the interface, inputs, outputs, security checks made by the TCB, and the errors and
exceptions reported by the TCB. The DTLS is complete and consistent with respect to the security model.

4 C co y

The system recovery after a failure is accomplished by rebooting. After a failure, the filesystems may not be
in a secure state, because the segments in memory and on the disk may not have been synchronized at the
time of the system failure. To ensure that a filesystem is in a secure state, the system provides two trusted
commands: check and fscheck. For a detailed description of these commands, see Section 4.7.3.2.2, page
81. When a filesystem is mounted, the kernel sets the “mounted” flag in the super page of the filesystem.
The kernel resets this flag upon unmounting a filesystem. The kernel does not mount a filesystem if the
“mounted” flag is already set.

The super page of a filesystem also contains a flag called “checked.” This flag is set by the check program
after performing segment level repair. The fscheck program will not run unless the “checked” flag is set,
i.e., the check program has been run. The fscheck program performs the hierarchical file system level repair
and resets the “checked” and “mounted” flags. Thus, all mounted filesystems must have the check and the

132
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
7.5. CONFIGURATION MANAGEMENT

fscheck programs run against them after a system failure. The check program must be run before the fscheck
program. The check and the fscheck programs ensure that the segments and filesystems are in a secure state.

. Con ation ana m nt

The vendor has produced manuals 31, 22 that describe the configuration management system employed
and the processes by which the system is maintained during each Rating Maintenance Phase (RAMP),
respectively.

Because the base hardware used for the XTS-300 is comprised of COTS products, a method of keeping track
of revisions is mandatory. Some third-party vendors provide change notification in advance. Others provide
little or no notice. Wang keeps a list of accepted components by serial, model, and revision number. As each
component is received, it is inspected visually to determine whether the component numbers are the same
as those on the list. When a change is detected, Wang requests change information from the third-party
vendor. Regardless of whether the change information is received from the third-party vendor, a subset of
the test suite is always run on the assembly room floor. If all tests pass, the new component revision is
added to the acceptable product list.

The Hardware Engineering Group (HWEG) is responsible for evaluating and testing any hardware changes
prior to acceptance into the XTS-300 product. The HWEG performs tests (in addition to those performed
by Intel) to ensure that a standard product change does not have an effect on XTS-300. If a change is
determined to have an impact on XTS-300, additional testing using STOP 4.1 is performed, the extent of
which is determined by the Software Configuration Control Board (CCB).

The software configuration management for STOP 4.1 follows a formal change reporting and review proce-
dure. When a discrepancy is reported or an enhancement required, it is entered into the Internal Software
Note (ISN) database. An analyst is assigned (usually one of the senior members of a functional software
development area) who prepares a report summarizing the situation and the proposed action. The report is
evaluated and is reviewed by the CCB. This board, which meets frequently, consists of lead analysts from
the software development team, as well as representatives from engineering management. It is the CCB’s
responsibility to evaluate the impact of the proposed change and to verify that the proposed changes are
comprehensive and technically sound, as well as to ensure that all areas of documentation, testing, and
performance analysis are adequately covered. The CCB makes the final decision with respect to all changes
to STOP 4.1. It reviews all proposed changes twice during the development cycle; the last review consists
of a review of the modified code and all relevant documentation.! Standard software tools (e.g., Source
Code Control System (SCCS), lint, di) are utilized in order to organize the changes and make them more
convenient for the CCB to analyze. All source code, test code and design documentation is maintained under

SCCS.

. Syst m nt ity

XTS-300 has a multitude of tests that can be executed to test the integrity of the hardware. The Wang
provides three categories of tests: COTS o ine tests, BIOS power-up self-tests (POST), and Wang-written
tests.

1 he u r edureinv vingthe isutii ed even r emergen es.

133
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 7. ASSURANCES

The COTS off-line tests include, but are not limited to, the testing of many CPU instructions, known bugs
in earlier CPU chips, FPU instructions, repeated reads and writes of different patterns to all memory, checks
for bad address lines, all DM A channels and registers, interrupt controller priorities and vectoring, parallel
controller reads and writes, ethernet controller tests, and invalid opcode tests.

The BIOS POST tests is performed prior to loading STOP 4.1. The POST performs both security relevant
and non-security relevant tests. Of the security relevant tests, the following tests are included: reads and
writes of several values into all CPU registers, reads and writes to DMA registers, reads and writes of data to
all motherboard and adapter card memory locations, reads and writes to all main memory, reads and writes
of data to the CMOS RAM, data cache and cache disable, the keyboard interface, Programmable Interrupt
Timer (PIT) channels 0, 1, and 2, simple display features, and entering and exiting protected mode.

In addition to BIOS POST, some hardware controllers perform self-tests in response to the hardware “reset”
condition which propagates through the system during every reboot. These tests are performed by the SCSI
host adapter, the SCSI tape drive, and the SCSI disk drive.

The Wang-written tests are a subset of the existing security test suite for the XTS-300. These tests are
run off-line from a special bootable STOP 4.1 diskette which is provided to all XTS-300 customers. The
tests cover the following areas: segmentation, 1/O protection, privileged instructions, control transfers,
trap/interrupt/fault handling, and tasking.

. stin

Wang has provided the security analysis team with a test plan 27 describing their approach to testing
the system and detailing the test procedures 28, 29 developed to exercise all TCB interfaces over as full a
range of parameter values and boundary conditions as was practical?. The security analysis team reviewed
the vendor’s Test Procedures documents that describe each of the individual tests developed by the vendor.
Additionally, the team conducted their own set of penetration tests, the conclusions of which are summarized
in Section 8.20, page 151.

The XTS-300 system is continuously exercised outside of the formal testing environment through activities
described below. All XTS-300 design documentation is being produced and maintained on the production
XTS-300 system at Wang. All application development (primarily trusted) is being performed on an XTS-
300 running a standard version of UNIX. The development of all test software (both National Security
Agency required and internal) is being performed on the XTS-300 system running a standard version of

UNIX.

The XTS-300 system is currently operational at several sites including the Federal Bureau of Investigations
(FBI), the Canadian Government, the National Security Agency (NSA), National Research Laboratory
(NRL), and the WorldWide Military Command and Control System (WWMCCS) primarily in network

guard applications.

2 hevend ras reied n de athana sisthat as er rmed during the rigina evauati nt r vide assuran e that
data as assed rret r m t the erne

134
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
7.8. ARCHITECTURE STUDY

8 Acitct St dy

A formal architecture study was conducted during the original evaluation and documented in 15. The
security analysis team relied on the results of the original study and the study conducted for STOP 4.1 to
determine the extent to which the architecture of the XT'S-300 running STOP 4.1 was examined. The security
analysis team conducted a detailed study of the code that changed from STOP 3.2.E to STOP 4.1, which
represents approximately 25 percent of the TCB. The team examined the code primarily to be sure that
the XTS-300 still satisfied the B3 requirements for system architecture. The team also analyzed the design
documentation to confirm the correspondence between the implementation and the design documentation.

A formal architecture study was performed during the second week of February. The security analysis team
did the following for the code that was inspected:

Assess the degree and manner of interaction of the module with other modules, to judge to what extent
it supported the aim of a modular TCB.

Assess the degree and manner of interaction of each function within the module with other functions.
Analyze the usage of global variables by the module, and the functions within the module.

Examine how well the goal of data hiding was achieved.

Consider the complexity and comprehensibility of the module, and the functions within the module.

Investigate whether the use of any module or function depended on side-effects of that module or
function.

Check the accuracy and the degree of correspondence of the design documentation and source code.
Check the code for conformance with Wang’s coding standards 16 .

Search for duplicate code.

Search for duplicate data.

Consider whether privileges were acquired only when needed by modules, and relinquished when no
longer needed.

The security analysis team concluded that the B3 requirements for system architecture are satisfied.

As was the case during the original evaluation, the team used the detailed design documentation, rather
than the DTLS, as the basis for establishing correspondence with the implementation. The detailed design
specification were used because they contained detail absent from the DTLS and because Wang regards them
as the primary documentation of the system design.

135
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 7. ASSURANCES

T is pa e intentiona et an

136
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300

8. isc tiona y Acc ss Cont ol

The TCB shall define and control access between named users and named objects (e.g., files and programs)
in the ADP system. The enforcement mechanism (e.g., access control lists) shall allow users to specify
and control sharing of those objects, and shall provide controls to limit propagation of access rights. The
discretionary access control mechanism shall, either by explicit user action or by default, provide that objects
are protected from unauthorized access. These access controls shall be capable of specifying, for each named
object, a list of named individuals and a list of groups of named individuals with their respective modes
of access to that object. Furthermore, for each such named object, it shall be possible to specify a list of
named individuals and a list of groups of named individuals for which no access to the object is to be given.
Access permission to an object by users not already possessing access permission shall only be assigned by
authorized users.

The XTS-300 Trusted Computer Base (TCB) allows named users to define and control access to named
objects through the use of an Access Control List (ACL). Every subject in XTS-300 has associated with it
an effective user and group; every named object has an ACL. Each ACL contains permissions that specify
the allowable access for the owning user, the owning group, up to six other users or groups, and any user
or group not explicitly listed. These permissions can either grant or deny a particular form of access to a
named object. When a subject introduces an object into its address space, the ACL is checked to ensure
that the subject can access the object. If the ACL is changed, XTS-300 forces revalidation of access.

When an object is created, the default discretionary access control (DAC) is either specified by the creator or
restricted to the creator. File system objects have an additional level of default protection in that a subject
must be able to access the directory to access the objects contained therein. Propagation of access rights is
controlled by restricting the ability to change the owning user or group of an object to the object’s owner or
a user with the appropriate privilege.

For more information on the discretionary access control mechanisms provided in XT'S-300, see Section 6.2.2,
page 107.

XTS-300 satisfies the B3 Discretionary Access Control requirement.

137
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

8. ct S

All authorizations to the information contained within a storage object shall be revoked prior to initial
assignment, allocation or reallocation to a subject from the TCB’s pool of unused storage objects. No
information, including encrypted representations of information, produced by a prior subject’s actions is to
be available to any subject that obtains access to an object that has been released back to the system.

Segments, TCB internal data structures, registers, device controllers, and directory entries are handled
correctly in terms of object reuse. Tapes are properly handled through administrative techniques and de-
gaussing. A more complete description of object reuse under STOP 4.1 is discussed on Section 6.7, page
124.

XTS-300 satisfies the B3 Object Reuse requirement.

8. a s

Sensitivity labels associated with each ADP system resource (e.g., subject, storage object, ROM) that is
directly or indirectly accessible by subjects external to the TCB shall be maintained by the TCB. These
labels shall be used as the basis for mandatory access control decisions. In order to import non-labeled data,
the TCB shall request and receive from an authorized user the security level of the data, and all such actions

shall be auditable by the TCB.

Every identified storage object in XTS-300 has associated with it a Mandatory Access Control (MAC) label
(consisting of a sensitivity label and an integrity label) that is maintained by the TCB. These labels are
used by the TCB to enforce the requirements of the XTS-300 mandatory access policy. Non-labeled data
can only be imported in XTS-300 via a single-level logical device; the TCB uses the MAC label assigned to
the device to label the imported data. The action of a user obtaining initial access to a device is audited, as
is the action of an administrator establishing the current MAC label of the device.

For more information, see Section b, page 97, for a discussion of the labels associated with objects in XTS-300;
Section 6.6, page 120, describes auditing in XTS-300.

138
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
8.4. LABEL INTEGRITY

XTS-300 satisfies the B3 Labels requirement.

8.4 a | nt ity

Sensitivity labels shall accurately represent security levels of the specific subjects or objects with which they
are associated. When exported by the TCB, sensitivity labels shall accurately and unambiguously represent
the internal labels and shall be associated with the information being exported.

All MAC labels (which consist of both sensitivity and integrity labels) in XTS-300 are maintained by the
TCB, which protects the labels from unauthorized modification. These labels are assigned initially based
on the current MAC label of the creating subject, which is in turn derived from the default MAC label
of the user on whose behalf the subject is operating. This default MAC label, which is dominated by the
user’s clearance, is initially assigned to the user by the administrator via ua_edit; a user with the appropriate
capability may change this default level via the change default level (cdl) command.

The only multilevel device to which labels are exported in XTS-300 are disk devices being accessed as
filesystems. Filesystems are maintained by the XTS-300 TCB, and use the same segment structure as is
possessed by the segment when in memory. The sensitivity label for a segment written to a file system will
be also be written to that filesystem (as part of the Segment Branch Table Entry (SBTE)). There is one
exception to this rule: temporary segments may be written to the boot filesystem while their SBTEs are held
in memory. However, temporary segments are deleted once they are no longer mapped into any process’s
address space.

In terms of single-level devices, labels are also exported to tapes by the trusted fsave program. The tape
itself is labeled at the MAC label of the fsave program, which must dominate the upper end of the MAC
label range of the filesystem being saved. The fsave program writes tapes using the segment block structure
of the filesystem; labels are written in their internal format as branch blocks.

For more information, see Section 6.2.1, page 103.

XTS-300 satisfies the B3 Label Integrity requirement.

139
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

8. po tationo a 1 d n o mation

The TCB shall designate each communication channel and 1/O device as either single-level or multilevel.
Any change in this designation shall be done manually and shall be auditable by the TCB. The TCB
shall maintain and be able to audit any change in the current security level or levels associated with a
communication channel or I/O device.

In the XTS-300 TCB, all non-filesystem I/O devices are single-level (filesystem devices are single-level only
when they are accessed as a device and not as a filesystem). Filesystems can either be multilevel or single-
level. Filesystems possess ranges and are single-level if the minimum and maximum MAC labels are equal.
Trusted programs are provided to allow users with appropriate privilege to change the designated ranges of
filesystems (config_edit) and the designated level of a single-level device (sda). Filesystems, although multi-
level, cannot have this range changed; is it specified at the time the filesystem is created by an administrator
via mkfsys. All possible changes are audited.

More information can be found in the following sections:

Section 6.2.3.3, page 111, provides a discussion of the MAC labels associated with a device.

Section 4.7.3.2, page 80, provides a discussion of the trusted commands used to manipulate device-
related labels.

Section 6.6, page 120, provides a discussion of the auditing associated with device label changes.

XTS-300 satisfies the B3 Exportation of Labeled Information requirement.

8. po tation to Itil 1 ic s

When the TCB exports an object to a multilevel I/O device, the sensitivity label associated with that object
shall also be exported and shall reside on the same physical medium as the exported information and shall
be in the same form (i.e., machine-readable or human-readable form). When the TCB exports or imports
an object over a multilevel communication channel, the protocol used on that channel shall provide for the
unambiguous pairing between the sensitivity labels and the associated information that is sent or received.

140
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
8.7. EXPORTATION TO SINGLE-LEVEL DEVICES

The only truly multilevel device supported by XTS-300 are disk devices accessed as filesystems. Filesystems
use the same segment structure as is used in memory. Access control information (including the MAC label)
is maintained in the SBTEs, which are stored on the same filesystem as the segments they describe. When a
segment is brought into memory by the kernel File System Manager, these MAC labels are an integral part
of the information transmitted.

When a disk is accessed as a raw device, as is done when a filesystem is created and checked, it is treated
as a single-level device. In these operations, the program accessing the device is trusted to maintain label
integrity. fsave and frestore are trusted to properly maintain the labels associated with the segments written
to tape.

For more information, see Section 4.4.5.2, page 52.

XTS-300 satisfies the B3 Exportation to Multilevel Devices requirement.

8. po tation to Sin 1 1 ic s

Single-level I/O devices and single-level communication channels are not required to maintain the sensitivity
labels of the information they process. However, the TCB shall include a mechanism by which the TCB and
an authorized user can reliably communicate to designate the single security level of information imported
or exported via single-level communication channels or I/O devices.

In order to communicate the MAC label of a non-filesystem device (all non-filesystem devices are treated by
XTS-300 as single-level), the XTS-300 TCB provides the administrator, through the trusted path, with the
set device access (sda) command. This command is used to designate the single MAC label (which includes
the sensitivity label) of the data imported from or exported to the logical device. Any changes to the MAC
label of a device are audited.

For more information, see Section 4.7.3.2.11, page 86.

XTS-300 satisfies the B3 Exportation to Single-Level Devices requirement.

141
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

8.8 a lin man ada 1 tp t

The ADP system administrator shall be able to specify the printable label names associated with exported
sensitivity labels. The TCB shall mark the beginning and end of all human-readable, paged, hardcopy output
(e.g., line printer output) with human-readable sensitivity labels that properly ! represent the sensitivity of
the output. The TCB shall, by default, mark the top and bottom of each page of human-readable, paged,
hardcopy output (e.g., line printer output) with human-readable sensitivity labels that properly represent
the overall sensitivity of the output or that properly represent the sensitivity of the information on the page.
The TCB shall, by default and in an appropriate manner, mark other forms of human-readable output (e.g.,
maps, graphics) with human-readable sensitivity labels that properly represent the sensitivity of the output.
Any override of these marking defaults shall be auditable by the TCB.

The XTS-300 TCB labels all printed output with banner pages (at the beginning and end of each file) and
internal page labels (at the top and bottom of each page) that reflect the sensitivity label associated with
the file being printed. These banner pages cannot be suppressed. A user with the UNMARKED PRINT
ALLOWED capability can suppress the printing of internal page labels (which results in a distinct auditable
event), but cannot change the internal page labels. The human-readable forms of the levels and categories
that make up the sensitivity label are obtained from the Security Map database, which is maintained by the
administrator using the sm_edit command. The length of the printer page cannot be shortened; the standard
page length does allow space for the maximum sensitivity label.

Spoofing is prevented through a combination of system and procedural controls. The header and trailer
banners contain a sequence number which is not alterable by a user. The sequence number is represented
internally by a 16-bit unsigned integer. Operators and administrators are advised by the Trusted Facility
Manual 34 to inspect the printed output to be sure that the sequence numbers are in proper order. If a
user tries to create a false banner page, then the sequence numbering would be out of order. These header
and trailer banner pages will always be generated and cannot be manipulated by a user.

The evaluation configuration for XTS-300 does not support the ability to produce other forms (e.g., maps,
graphics) of human-readable output.

For more information, see Section 4.7.1.6, page 71, and Section 6.2.3.4, page 113.

XTS-300 satisfies the B3 Labeling Human-Readable Output requirement.

1 he hierar hi a assi atin m nent in human reada e sensitivit a essha ee ua t the greatest hierar hi a

assi atin an the in rmati n in the ut ut that the a esreert then n hierar hi a ateg r m nent sha
in ude a the n n hierar hi a ateg ries thein rmati nin the ut utthe a esreert utn ther n n hierar hi a
ateg ries.
142

FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
8.9. SUBJECT SENSITIVITY LEVELS

8. S ct S nsiti ity Is

The TCB shall immediately notify a terminal user of each change in the security level associated with that
user during an interactive session. A terminal user shall be able to query the TCB as desired for a display
of the subject’s complete sensitivity label.

XTS-300 does not change the MAC label of a subject automatically. A user must explicitly request the TCB
to change the current MAC label maintained for the user by the Secure Server that is used for Secure Server
operations and for labeling subsequent process creation. The ability to change this label is restricted by the
capability mechanism. At any time, the user can issue the sl command to the TCB to ascertain the current
MAC label of the Secure Server. Note that, once created, a process cannot change its MAC label.

XTS-300 satisfies the B3 Subject Sensitivity Levels requirement.

8. ic a lIs

The TCB shall support the assignment of minimum and maximum security levels to all attached physical
devices. These security levels shall be used by the TCB to enforce constraints imposed by the physical
environments in which the devices are located.

Every physical device in XTS-300 communicates with the TCB through a controller for the appropriate
device type. The TCB identifies devices through the use of major and minor numbers. The major number
identifies the device type and is associated with a controller. The minor number identifies the particular
device on the controller (logical device, if the device is supports a filesystem and is partitioned). The TCB
maintains the major and minor number information in the LDD. This information includes the minimum
and maximum MAC labels that may be possessed by information flowing to and from the device. The TCB
enforces the restriction that any logical devices accessed via a major and minor number have a MAC label
that is within the defined range for the device.

For more information on devices, see Section 6.2.3.3, page 111.

143
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

XTS-300 satisfies the B3 Device Labels requirement.

8. andato y Acc ss Cont ol

The TCB shall enforce a mandatory access control policy over all resources (i.e., subjects, storage objects,
and I/O devices) that are directly or indirectly accessible by subjects external to the TCB. These subjects
and objects shall be assigned sensitivity labels that are a combination of hierarchical classification levels and
non-hierarchical categories, and the labels shall be used as the basis for mandatory access control decisions.
The TCB shall be able to support two or more such security levels. The following requirements shall hold for
all accesses between all subjects external to the TCB and all objects directly or indirectly accessible by these
subjects: A subject can read an object only if the hierarchical classification in the subject’s security level is
greater than or equal to the hierarchical classification in the object’s security level and the non-hierarchical
categories in the subject’s security level include all the non-hierarchical categories in the object’s security
level. A subject can write an object only if the hierarchical classification in the subject’s security level is
less than or equal to the hierarchical classification in the object’s security level and all the non-hierarchical
categories in the subject’s security level are included in the non-hierarchical categories in the object’s security
level. Identification and authentication data shall be used by the TCB to authenticate the user’s identity
and to ensure that the security level and authorization of subjects external to the TCB that may be created
to act on behalf of the individual user are dominated by the clearance and authorization of that user.

The XTS-300 TCB enforces a mandatory access control policy over all identified system resources (i.e.,
subjects, storage objects, and I/O devices) that are accessible, either directly or indirectly, to subjects
external to the TCB. This policy is a combination of the Bell and LaPadula 4 and strict Biba 5 models.
It uses, as the basis of its enforcement, MAC labels that are associated with every subject and object in the
system. These MAC labels consist of hierarchical sensitivity and integrity levels (16 sensitivity, 8 integrity),
and nonhierarchical sensitivity and integrity categories (64 sensitivity, 16 integrity).

XTS-300 provides a function that is used to compare sensitivity or integrity labels; this comparison
is done whenever a subject external to the TCB accesses an object. To read an object, the sensitivity label
of the subject must dominate the sensitivity label of the object, and the integrity label of the object must
dominate the integrity label of the subject. In order to write an object, the sensitivity label of the object
must dominate the sensitivity label of the subject, and the integrity label of the subject must dominate the
integrity label of the object. This is illustrated in Figure 6.1 (page 104).

Every user in XTS-300 has an identification and authentication database record that specifies the MAC label
of the user’s clearance. The TCB enforces the restriction that any subject created on behalf of a user has a
current MAC label dominated by the user’s clearance.

For more information, see Section 6.2.1, page 103.

144
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
8.12. IDENTIFICATION AND AUTHENTICATION

XTS-300 satisfies the B3 Mandatory Access Control requirement.

8. d nti cation and A t ntication

The TCB shall require users to identify themselves to it before beginning to perform any other actions
that the TCB is expected to mediate. Furthermore, the TCB shall maintain authentication data that
includes information for verifying the identity of individual users (e.g., passwords) as well as information for
determining the clearance and authorizations of individual users. This data shall be used by the TCB to
authenticate the user’s identity and to ensure that the security level and authorizations of subjects external
to the TCB that may be created to act on behalf of the individual user are dominated by the clearance and
authorization of that user. The TCB shall protect authentication data so that it cannot be accessed by any
unauthorized user. The TCB shall be able to enforce individual accountability by providing the capability to
uniquely identify each individual ADP system user. The TCB shall also provide the capability of associating
this identity with all auditable actions taken by that individual.

STOP 4.1 requires all users to identify and authenticate themselves before they are allowed to access system
resources. Users enter unique usernames and passwords to identify and authenticate themselves to the
system.

The TCB maintains authentication data including username, password, and the default and maximum
security and integrity levels for each user in the User Access Authentication database. The only user that
this database is accessible to is the system administrator. This database is at maximum security and
maximum integrity. Additionally, this file is protected from access by untrusted software by assigning it a
unique file subtype.

This data is used by the Secure Server to authenticate a user’s identity and to verify that the user’s default
security and integrity levels are within the maximum security and integrity levels allowed for that user, as
well as being within the range of allowed levels for the given terminal.

Each individual is associated with a unique identifier associated with that individual for recording all au-
ditable actions taken by that user.

XTS-300 satisfies the B3 Identification and Authentication requirement.

145
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

8. st d at

The TCB shall support a trusted communication path between itself and users for use when a positive TCB-
to-user connection is required (e.g., login, change subject security level). Communications via this trusted
path shall be activated exclusively by a user or the TCB and shall be logically isolated and unmistakably
distinguishable from other paths.

The TCB establishes a trusted path with a user when the Secure Attention Key (SAK) on the terminal is
pressed (the key). The TCB displays the login banner if no user is currently logged in at that
terminal. If a user is logged in at that terminal, the TCB displays the current process family identifier
and MAC label information. The path is logically isolated since the establishment of the trusted path by
processing the SAK is initiated by the terminal driver as soon as the SAK is detected. The terminal is then
under the control of the TCB; from then on, no untrusted processes can perform I/O to the terminal. The
path is unmistakable since it is only initiated by the user action of pressing the SAK, and the TCB is in
control of the terminal after the SAK is detected by the terminal driver. The TCB never initiates a trusted
path without the user pressing the SAK. Once the trusted path is established by the TCB, the user can
enter any of the Trusted Commands in Section 4.7.3, page 76.

XTS-300 satisfies the B3 Trusted Path requirement.

8. 4 A dit

The TCB shall be able to record the following types of events: use of identification and authentication
mechanisms, introduction of objects into a user’s address space (e.g., file open, program initiation), deletion
of objects, and actions taken by computer operators and system administrators and/or system security
o cers. The TCB shall also be able to audit any override of human-readable output markings. For each
recorded event, the audit record shall identify: date and time of the event, user, type of event, and success
or failure of the event. For identification/authentication events the origin of request (e.g., terminal ID)
shall be included in the audit record. For events that introduce an object into a user’s address space and
for object deletion events the audit record shall include the name of the object and the object’s security
level. The ADP system administrator shall be able to selectively audit the actions of any one or more users
based on individual identity and/or object security level. The TCB shall be able to audit the identified
events that may be used in the exploitation of covert storage channels. The TCB shall contain a mechanism
that is able to monitor the occurrence or accumulation of security auditable events that may indicate an

146
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
8.14. AUDIT

imminent violation of security policy. This mechanism shall be able to immediately notify the security
administrator when thresholds are exceeded, and if the occurrence or accumulation of these security relevant
events continues, the system shall take the least disruptive action to terminate the event.

The Audit facility within STOP 4.1 is used by the TCB to record security-relevant events that take place
on the system.

The File System Daemon process produces audit files in the / ud t directory from information it obtains
from the kernel. The audit files are protected with file subtypes that prevent access by untrusted software.

Audit events are generated by Trusted Software, TCB System Services, and the kernel and include the
following types of events:

Login attempted

Logout command issued

Opens and closes of file system objects

Creates and deletes of file system objects

Operator command issued

Administrator command issued

Print request issued with no markings.
Each audit record has a header that contains the size of the audit record, type of event being audited, date

and time the audit record was generated, process ID of the process causing the audit event, MAC label of
the process, effective privileges of the process, real user ID, and real group ID.

Each audit record also contains data pertinent to the particular audit event including , but not limited to,
the device id, MAC labels (including both the new and old labels in the case of a change), file system ID,
segment name, channel number, and privilege set.

Audit functions can be selectively audited by event, by user and by object security level. The auditing
mechanism is implemented such that a minimum MAC label may be specified, below which audit messages
are not generated for object creation, deletion, and access.

STOP 4.1 monitors as imminent security violations the accumulation of repeated login failures. The number
of failures allowed before action is taken is site configurable. After this number of failed login attempts, a
message is sent to the system console and the terminal is locked out. That terminal is no longer usable until
either that terminal is freed up via the ctl command or the duration of timeout has expired.

XTS-300 satisfies the B3 Audit requirement.

147
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

8. Syst m A c it ct

The TCB shall maintain a domain for its own execution that protects it from external interference or
tampering (e.g., by modification of its code or data structures). The TCB shall maintain process isolation
through the provision of distinct address spaces under its control. The TCB shall be internally structured
into well-defined largely independent modules. It shall make effective use of available hardware to separate
those elements that are protection-critical from those that are not. The TCB modules shall be designed such
that the principle of least privilege is enforced. Features in hardware, such as segmentation, shall be used to
support logically distinct storage objects with separate attributes (namely: readable, writeable). The user
interface to the TCB shall be completely defined and all elements of the TCB identified. The TCB shall be
designed and structured to use a complete, conceptually simple protection mechanism with precisely defined
semantics. This mechanism shall play a central role in enforcing the internal structuring of the TCB and
the system. The TCB shall incorporate significant use of layering, abstraction and data hiding. Significant
system engineering shall be directed toward minimizing the complexity of the TCB and excluding from the
TCB modules that are not protection-critical.

XTS-300 employs a ring architecture that uses hardware to enforce domain isolation. From the innermost
ring, ring 0, to the outermost, ring 3, the ability of the software to access system objects decreases. The TCB
elements are clearly defined as the Security Kernel, TCB System Services (TSS), and Trusted Software. Each
element of the TCB executes in a separate domain. Ring 0 comprises the Kernel domain, ring 1 comprises the
Trusted System Services domain, and, for a TCB process, ring 2 comprises the Operating Systems Services
domain, which includes that software requiring privilege and/or integrity to execute. For untrusted software,
Commodity Application System Services (CASS) runs in ring 2. User application software runs in ring 3, the
domain of least access. The ring architecture is also used to enforce write, read, and call (execute) access.

Each process has a unique, virtual address space using hardware segments. Only the text for the kernel,
TSS, and CASS plus kernel data, such as the memory map, are considered global information. Each process
has its own copy of ring stacks, process descriptor segments, and process-specific text and data. Least
privilege is enforced by tailoring privileges and integrity to particular security-relevant operations and to the
software which needs to perform such operations. The kernel performs as a reference monitor and as a basic
operating system. The kernel manipulates those entities which are objects (e.g., segments) and its internal
data structures. TSS provides the file system hierarchy and performs high-level user I/O functions. Trusted
Software provides the user interface to perform security-relevant functions and the trusted path. Wang has
published 19 and 21 which define the components of the TCB and its interface. The TCB enforces a strict
interpretation of the Bell and LaPadula security model 4 and the Biba integrity model 5 .

Segmentation is used in STOP 4.1 to support logically distinct storage objects. The permissions set for each
global segment are appropriate, given the contents. TCB text is protected from reading and writing. Data
internal to a domain is manipulated only by the code running in that domain. In addition, the modules
within a domain have been designed to manipulate only those data structures pertinent to the functions
within a particular module. The kernel and TSS are internally layered such that, in general, those routines
that rely on others to perform services are at higher layers. Routines which do not rely on others to perform
functions are placed at lower layers of the kernel and TSS, respectively. In addition, the TCB contains only

148
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
8.16. SYSTEM INTEGRITY

that code necessary to perform its functionality. The TCB of XTS-300 is modular and relatively easy to
understand.

XTS-300 satisfies the B3 System Architecture requirement.

8. Syst m nt ity

Hardware and/or software features shall be provided that can be used to periodically validate the correct
operation of the on-site hardware and firmware elements of the TCB.

XTS-300 has a multitude of tests that can be executed to test the integrity of the hardware. The Wang
provides three categories of tests: COTS o ine tests, BIOS power-up self-tests (POST), and Wang-written
tests.

For a more detailed description of system integrity features, see Section 7.6, page 133.

XTS-300 satisfies the B3 System Integrity requirement.

8. Co t C ann | Analysis

The system developer shall conduct a thorough search for covert channels and make a determination (either
by actual measurement or by engineering estimation) of the maximum bandwidth of each identified channel.

The vendor conducted a thorough analysis of the system and produced a covert channel analysis 23 (see
Section 7.2, page 129). In it, the vendor describes the technique used to ensure the search was thorough,
and describes exploitation scenarios for each of the channels uncovered. Using these exploitation scenarios,
a calculation is made as to the maximum capacity of each of the channels.

149
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

XTS-300 satisfies the B3 Covert Channel Analysis requirement.

8. 8 st d acility ana m nt

The TCB shall support separate operator and administrator functions. The functions performed in the
role of a security administrator shall be identified. The ADP system administrative personnel shall only
be able to perform security administrator functions after taking a distinct auditable action to assume the
security administrator role on the ADP system. Non-security functions that can be performed in the security
administration role shall be limited strictly to those essential to performing the security role effectively.

The system supports the operator and administrator functions through the use of integrity labels. Any user
with an integrity label at or higher than the operator integrity level can execute the operator commands,
provided the user has the required capabilities.

Any user with an integrity label at or higher than the administrator integrity level can perform the ad-
ministrator commands, provided the user has the required capabilities. The administrator integrity level is
higher than the operator integrity level. Thus, a user with the operator integrity level cannot execute the
administrator commands.

The Trusted Facility Manual (TFM) recommends that the untrusted users’ assigned maximum integrity
levels should be lower than the Operating System Services (OSS) integrity level (the OSS integrity level
is lower than the operator integrity level). Thus, an untrusted user cannot execute the operator or the
administrator commands.

The two ways for a user to assume the role of the administrator is to login with the administrator or higher
integrity, or to use the sl command to set the integrity label to administrator or higher. Since all user logins
and the use of the sl command are auditable along with the MAC label, the assumption of the administrator
role is auditable.

A user logged in with the OSS or higher integrity level cannot execute the run command (which is used for
running untrusted programs). This feature limits the user acting in the administrator role (since the user’s
integrity level is higher than OSS integrity level) to trusted commands only.

XTS-300 satisfies the B3 Trusted Facility Management requirement.

150
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
8.19. TRUSTED RECOVERY

8. st d co Yy

Procedures and/or mechanisms shall be provided to assure that, after an ADP system failure or other
discontinuity, recovery without a protection compromise is obtained.

After a system failure, the filesystems may not be in a consistent and secure state. The system provides two
trusted commands to bring a filesystem to a secure state. The check command repairs the segment level file
system and the fscheck command repairs the hierarchical file system (see Section 4.7.3.2.2, page 81). After
a system failure, a filesystem cannot be referenced, used, or remounted until both the check and the fscheck
commands are executed.

XTS-300 satisfies the B3 Trusted Recovery requirement.

8. S ¢ ity stin

The security mechanisms of the ADP system shall be tested and found to work as claimed in the system
documentation. A team of individuals who thoroughly understand the specific implementation of the TCB
shall subject its design documentation, source code, and object code to thorough analysis and testing. Their
objectives shall be: to uncover all design and implementation flaws that would permit a subject external
to the TCB to read, change, or delete data normally denied under the mandatory or discretionary security
policy enforced by the TCB; as well as to assure that no subject (without authorization to do so) is able
to cause the TCB to enter a state such that it is unable to respond to communications initiated by other
users. The TCB shall be found resistant to penetration. All discovered flaws shall be corrected and the TCB
retested to demonstrate that they have been eliminated and that new flaws have not been introduced. Testing
shall demonstrate that the TCB implementation is consistent with the descriptive top-level specification. No
design flaws and no more than a few correctable implementation flaws may be found during testing and there
shall be reasonable confidence that few remain.

As a basis for comparison, the discussion of the security testing requirement from the evaluation of STOP
3.1.E was retained. The results of the evaluation of STOP 4.1 are described in the paragraph following the
one below.

151
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

The security mechanisms of STOP 4.1 were subjected to both functional and penetration testing and found
to work as claimed in the system documentation. The team conducted a detailed study of the architecture
of XT'S-300 during which they analyzed the documentation and source code in detail.

The architecture study yielded few minor flaws. They were corrected by Wang. Penetration testing uncovered
eight implementation flaws. Three of the flaws were fixed and retested by Wang. One flaw resulted in a
modification to the Covert Channel Analysis. One flaw resulted in a TFM warning. The team recommended
that a TFM warning be added for one flaw, but the warning was not added for this RAMP cycle. Finally,
two flaws were left as open system problems. The testing performed by the team showed that the system was
resistant to penetration. The team found that the TCB implementation was consistent with the descriptive
top-level specification. No design flaws were found and the implementation flaws that were found during
testing were corrected. The team is confident that the system is resistant to penetration.

XTS-300 satisfies the B3 Security Testing requirement.

8. si n Sp ci cation and i cation

A formal model of the security policy supported by the TCB shall be maintained that is proven consistent
with its axioms. A descriptive top-level specification (DTLS) of the TCB shall be maintained that completely
and accurately describes the TCB in terms of exceptions, error messages, and effects. It shall be shown to
be an accurate description of the TCB interface. A convincing argument shall be given that the DTLS is
consistent with the model.

The vendor has provided a security model interpretation document 26 based on the Bell and LaPadula model
with the Biba model incorporated through a combined dominance relation and the Multics Interpretation.

The vendor has provided a DTLS 19 that, in combination with the Trusted Programmer’s Reference
Manual 35 and the User’s Manual 36, describes the TCB operations through the kernel gates, the TSS
gates, and the trusted commands.

The team performed a manual review and comparison analysis of the DTLS and the TCB Detailed Specifi-
cations 24, 25, 20 and found them to be consistent. The Detailed Specifications describe the TCB software
at the pseudo-code level.

The team performed a manual review and comparison analysis of the model and the DTLS, the TPRM, and
the User’s Manual and found the the latter three documents to be consistent with the model.

152
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
8.22. CONFIGURATION MANAGEMENT

XTS-300 satisfies the B3 Design Specification and Verification requirement.

8. Con ation ana m nt

During development and maintenance of the TCB, a configuration management system shall be in place that
maintains control of changes to the descriptive top-level specification, other design data, implementation
documentation, source code, the running version of the object code, and test fixtures and documentation.
The configuration management system shall assure a consistent mapping among all documentation and code
associated with the current version of the TCB. Tools shall be provided for generation of a new version of
the TCB from source code. Also available shall be tools for comparing a newly generated version with the
previous TCB version in order to ascertain that only the intended changes have been made in the code that
will actually be used as the new version of the TCB.

The vendor’s configuration management plan was described earlier in this report (see Section 7.5, page 133).
It describes the techniques used to maintain control of changes to the system. All design documentation,
including the DTLS, and all source code, including test fixtures, are maintained under SCCS. The di
command is used to compare newly generated versions with previous versions to ensure that all intended
changes are incorporated in the new version.

XTS-300 satisfies the B3 Configuration Management requirement.

8. Sc ity at s s s id

A single summary, chapter, or manual in user documentation shall describe the protection mechanisms
provided by the TCB, guidelines on their use, and how they interact with one another.

The vendor has provided a User’s Manual 36 . The document describes an overview of the system. The
document also includes descriptions of how to use the trusted path, how to login, password control, and a

153
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

description of all of the trusted commands available to the user. The User’s Manual also contains the shell
commands.

XTS-300 satisfies the B3 Security Features User’s Guide requirement.

8. 4 st d acility an al

A manual addressed to the ADP system administrator shall present cautions about functions and privileges
that should be controlled when running a secure facility. The procedures for examining and maintaining the
audit files as well as the detailed audit record structure for each type of audit event shall be given. The manual
shall describe the operator and administrator functions related to security, to include changing the security
characteristics of a user. It shall provide guidelines on the consistent and effective use of the protection
features of the system, how they interact, how to securely generate a new TCB, and facility procedures,
warnings, and privileges that need to be controlled in order to operate the facility in a secure manner. The
TCB modules that contain the reference validation mechanism shall be identified. The procedures for secure
generation of a new TCB from source after modification of any modules in the TCB shall be described. It
shall include the procedures to ensure that the system is initially started in a secure manner. Procedures
shall also be included to resume secure system operation after any lapse in system operation.

The vendor has provided two manuals for administrators and operators. The Trusted Facility Manual 34 is
geared to the security administrator for the system and contains an overview of the system, a comprehensive
description of the system’s security mechanisms, guidelines on maintaining a secure system, and a description
of all the trusted commands available to all administrators and operators. It describes the TCB, indicating
what portions of the TCB contain the reference validation mechanism. The document also contains descrip-
tions of the audit records for each of the auditable events. It explains how to install the TCB initially, and
how to bring it into operation, both from a normal start, and following a system failure. Another manual,
providing information for programmers, is called “Trusted Programmer’s Reference Manual” 35 . It contains
a description of all visible TCB gates, and a description of all routines in the trusted software library. There
are no provisions for a site’s generating a new TCB from source; there is only a single version, and it is
generated by the vendor.

XTS-300 satisfies the B3 Trusted Facility Manual requirement.

154
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
8.25. TEST DOCUMENTATION

8. st oc m ntation

The system developer shall provide to the evaluators a document that describes the test plan, test procedures
that show how the security mechanisms were tested, and results of the security mechanisms’ functional
testing. It shall include results of testing the effectiveness of the methods used to reduce covert channel

bandwidths.

Wang has supplied the team with a set of documents 17, 27, 28, 29, 30, 33 that describe a comprehensive
approach toward testing the XTS-300 and its security mechanisms. The test documentation includes a test
plan, a test user’s guide, and a two-volume test procedure document, as well as a test coverage analysis
document. Wang’s test suite includes tests test test all user-visible error returns from the TCB gates, as
well as the designed functionality. The test coverage analysis document traces parameter passing for all of
the gates that call service-level access-decision functions inside the kernel and TSS, as well as from TSS to
the kernel for those TSS functions that directly pass access information to the kernel.

The test coverage analysis shows that the integrity of parameters is preserved for those calls in the kernel
and TSS that result in an access decision being made. The methods and effectiveness of reducing covert
channel bandwidths are described and analyzed in Wang’s Covert Channel Analysis (CCA) 23 .

XTS-300 satisfies the B3 Test Documentation requirement.

8. sin oc m ntation

Documentation shall be available that provides a description of the manufacturer’s philosophy of protection
and an explanation of how this philosophy is translated into the TCB. The interfaces between the TCB
modules shall be described. A formal description of the security policy model enforced by the TCB shall be
available and proven that it is su cient to enforce the security policy. The specific TCB protection mech-
anisms shall be identified and an explanation given to show that they satisfy the model. The descriptive
top-level specification (DTLS) shall be shown to be an accurate description of the TCB interface. Docu-
mentation shall describe how the TCB implements the reference monitor concept and give an explanation
why it is tamper resistant, cannot be bypassed, and is correctly implemented. The TCB implementation
(i.e., in hardware, firmware, and software) shall be informally shown to be consistent with the DTLS. The
elements of the DTLS shall be shown, using informal techniques, to correspond to the elements of the TCB.
Documentation shall describe how the TCB is structured to facilitate testing and to enforce least privilege.
This documentation shall also present the results of the covert channel analysis and the tradeoffs involved in

155
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300
CHAPTER 8. EVALUATION AS A B3 SYSTEM

restricting the channels. All auditable events that may be used in the exploitation of known covert storage
channels shall be identified. The bandwidths of known covert storage channels, the use of which is not
detectable by the auditing mechanism, shall be provided.

The vendor has provided the hardware documentation for the Intel 486 9, 6 | for the peripherals 1, 11, and
for hardware integrity 33 .

The System Architecture document 21 and the DTLS 19 provide the philosophy of protection, and explain
how this philosophy is translated into the TCB.

The System Architecture document 21 defines the interfaces between the TCB modules. The Detailed
Software Specifications Part IIs 24, 25, 20 describe the module interfaces in detail (the Part IIs describe
the software implementation down to the pseudo-code level). The Bell and LaPadula model 4 with the
Biba model is used as the abstract model and the Multics Interpretation 4 is used as the concrete model.
The vendor has also provided the Security Model Interpretation 26 relating the state-transitioning TCB
interfaces and the corresponding rules to the basic 11 rules in the Multics Interpretation.

The team has carried out a manual review and analysis of the Security Model Interpretation, the DTLS,
and the Detailed Software Specifications. These documents are consistent with each other. Thus, the team
concludes that the DTLS is an accurate description of the TCB interface, the DTLS and implementation
are consistent with each other, and the elements of the DTLS correspond to the elements of the TCB.

The System Architecture document presents the argument that the kernel implements the reference monitor
concept and that the kernel is tamper-resistant and cannot be bypassed. In addition to the consistency
among the Security Model, the DTLS, and the Detailed Software Specifications, testing will provide further
assurance that the kernel is correctly implemented.

The System Architecture document describes the TCB structure and presents a convincing argument that
the principle of least privilege is enforced. After reviewing the TCB structure described in the System
Architecture document, the team concluded that the TCB structure was designed to facilitate easy and
comprehensive testing.

The vendor provided a Covert Channel Analysis document 23 that identifies the storage and timing channels.
The document also contains the computations of the bandwidths of these channels. The document further
identifies the resource exhaustion events that must be audited to detect the potential exploitation of the
storage channels. Finally, the document provides a mechanism (time delays) to reduce the bandwidths of
the storage channels caused by resource exhaustions.

XTS-300 satisfies the B3 Design Documentation requirement.

156
FI AL: July 11, 1995

Final Evaluation Report Wang XTS-300

This section of the report contains some of the more personal comments of the evaluation team, particularly
those that deal with aspects of the system that do not directly affect the rating assigned. Some of the
comments expressed here may be of value to prospective users of the system and also to those responsible
for determining the suitability of this system in a particular application.

. no 1ld al Coop ati ndo

The advantages of working with an experienced, conscientious vendor should not be overlooked. Wang has
shown over and over again its dedication to providing a solid system that meets the TCSEC B3 requirement.
It worked closely and supportively with the team. The interaction with the vendor was exemplary, and
helped make this evaluation move more smoothly than it would otherwise have.

. ¢ nical Ad anta s

There are some positive technical aspects of the system that the team felt should be called to the reader’s
attention. They are:
The command and programming interface implementation is very close to standard UNIX

The file system is contained in the TCB, so that the TCB actually implements the protected objects
as opposed to an unusual and unique emulation layer

The system uses a central, simple mechanism (mandatory integrity) to enforce administrative policies

Users can optionally employ the mandatory integrity policy to protect files and programs from tam-
pering.

. tility

